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Abstract

We propose a methodology to classify individuals into few but meaningful health

groups by estimating a panel Markov switching model that exploits rich information from

panel household surveys. Using the HRS, we identify four persistent health groups, de-

pending on individual’s physical and mental disabilities. Our classification outperforms

existing health measures at explaining entry in nursing homes, home health care, out-of-

pocket medical expenses, and mortality for individuals in the HRS, ELSA, and SHARE.

Through a workhorse model of savings, we recover an asset cost of bad health that is twice

as big as when using self-reported health.

Keywords: Latent groups, Frailty, Long-Term Care, Medical expenses.
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1 Introduction

Household surveys of the elderly (HRS, SHARE, or ELSA, among others) contain a wide

array of variables with different aspects of individuals’ health status. Despite the richness

of the data, researchers often need to rely on a single measure that summarizes most of the

information about health. For example, structural economists studying the welfare costs of

poor health need to incorporate health as a key state variable driving survival, savings, and

insurance choices while keeping the state-space manageable. Researchers are thus constrained

to undertake an ad-hoc decision over which health variable to use hampering the comparison

across studies.

In this paper, we generate a parsimonious health measure by estimating the health status of

individuals using a novel dynamic latent variable model that exploits panel-data information

on objective health measures: twelve dummy variables on reported difficulty with Activities

of Daily Living (ADLs) and Instrumental Activities of Daily Living (IADLs). The economet-

ric model assumes that individuals belong to one out of a prespecified finite number of latent

health groups. In the cross-section, individuals belonging to different health groups differ in

the probability of reporting difficulties with each I-ADLs.1 In the time series, individuals be-

longing to different groups differ in health transition and survival probabilities. The estimated

model parameters define health groups and provide information on how to classify individuals

over time in these groups.

Using the Health and Retirement Study, we find that all I-ADLs can be suitably repre-

sented by four health groups, which divide individuals into healthy, physically frail, mentally

frail, and impaired. The last group of individuals have both types of limitations, physical and

cognitive, while the healthy have no or light difficulties with I-ADLs.2 In turn, the physically

frail have limited mobility, while the mentally frail have difficulties with more cognitive tasks

such as managing money. Importantly, and in line with recent medical literature (e.g. Morris

et al., 2013), not all the I-ADLs are equally informative for classifying individuals in health

groups. For example, if a person has difficulties with getting in or out of bed, she belongs

to the physically frail group with a probability higher than one third but to the mentally frail

with a probability lower than 5%. In contrast, an individual incapable of taking medications is

1We denote I-ADLs as the set of both ADLs and IADLs; likewise, I-ADL refers to one of these variables.
2Throughout the paper, we use italics to refer to our states, hence a healthy individual is a member of the

group we label healthy.
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much more likely to belong to the mentally rather than the physically frail group.

At the age of 60, around 80% of individuals are healthy, 10% are physically frail and the

remaining 10% includes almost as many impaired as mentally frail. As individual age, we

observe the same stylized facts previously documented in the literature of aging (see Manton

and Soldo, 1985, among others): health deteriorates with age, individuals in worse health have

larger chances of dying, and females live longer than males. Furthermore, in line with Brown

(2002), Meara et al. (2008), and Pijoan-Mas and Rı́os-Rull (2014) we find a large educational

gradient in life expectancy.

Once health groups and transition probabilities are estimated, the algorithm allocates in-

dividuals to health groups by exploiting the time-series information on survival and I-ADLs.

More precisely, through the Hamilton filter, filtered probabilities determine the chances that an

individual belongs to each health group given past and current history of I-ADLs. We then use

these probabilities to compare access to medical and care services across health groups. On

average, impaired individuals spend $12,411 per year in out-of-pocket (OOP) medical spend-

ing while healthy ones spend $3,330. Likewise, mentally frail individuals spend $1,194 more

than physically frail ones, who employ $4,524. The use of long-term care (LTC) services also

largely differs across groups. While 7.3% of the mentally frail individuals live in a nursing

home at the time of the interview, only 1.5% of the physically frail do. This disparity widens

between members of the healthy group, who barely live in nursing homes at all, and those

of the impaired, out of which 31.8% reside in these facilities. A similar pattern arises if we

compare received professional care between these two extreme groups. Nonetheless, mentally

and physically frail individuals need a medical-trained person to look after them at home with

a similar probability.

To assess the predictive power of our classification, we contrast it with other commonly

used health classifications in the literature, namely, five different levels of self-reported health,

whether the individual reports difficulty with any ADL, and the division of a frailty index into

five equally sized groups.3 To do so, we consider three health-related spending variables: OOP

medical expenditures as well as indicators of residing in a nursing home and receiving care,

which the macro literature has identified as crucial drivers of savings (De Nardi et al. 2010;

3De Nardi et al. (2010), Kopecky and Koreshkova (2014), Pijoan-Mas and Rı́os-Rull (2014), Dobrescu (2015),

and De Nardi et al. (2016) rely on self-reported health, Bohacek et al. (2015) on ADLs, and Braun et al. (2017)

on a frailty index.
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Barczyk and Kredler 2018; Ameriks et al. 2020). Our classification generates more differen-

tiated groups, which leads to higher explanatory and predictive power of these variables. For

instance, conditional on age, education, and gender, self-reported health can explain 1.9 per-

centage points of the variance of OOP medical expenses and 7.1 of the variance of residing in

a nursing home. Our measure explains 4.0 and 27.3, respectively. Besides health measures, we

analyze the ability of the different classifications to predict mortality and find that our measure

dominates the alternative ones.

Additionally, we explore the consequences of using our measure in a life-cycle model by

solving the model proposed by De Nardi et al. (2010). Although the unconditional dissaving

pattern of the elderly remains unchanged, dissaving conditional on health differs substantially.

De Nardi et al. (2010) predict a similar dissaving pattern by healthy and unhealthy individuals.

In contrast, our estimation indicates that unhealthy individuals are responsible for most of

the dissaving during retirement. This result arises from a tighter correlation between health

and medical expenses and larger differences in survival conditional on health inherent in our

classification.

In order to produce the proposed health classification, estimation of the econometric model

is necessary. Therefore, to facilitate future usage of our proposed classification, we publicly

provide the probabilities of belonging to each estimated health group for the most commonly

used retirement surveys: HRS, ELSA, and SHARE on Bueren’s webpage for different numbers

of health groups.

Literature– Our paper complements the literature analyzing the effect of health on eco-

nomic decisions which relies on dynamic structural models to quantify the relative importance

of alternative mechanisms and their implications for policymaking. As mentioned earlier, due

to the curse of dimensionality, researchers undertake an ad-hoc decision over which of all the

possible health variables from the available surveys to use as a state variable. For instance,

De Nardi et al. (2010) and O’Donnell et al. (2015) use self-reported health which provides the

best mortality forecast as argued by Idler and Benyamini (1997); hence, it is ideal to assess

the risk of living longer. However, this measure does not capture long-term care needs, which

constitute an important component of medical expenses; thus, Ameriks et al. (2016) and Ko

(2016) rely on individuals’ difficulties with mobility or cognition. Likewise, the subjective na-

ture of self-reported health makes it unfeasible for some applications such as analyzing health

and mortality insurance choices. For this reason, Koijen et al. (2016) rely on medical expenses
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and morbidities to construct a measure of health while Braun et al. (2017) summarize 40 vari-

ables into a continuous frailty index, which is then divided into quintiles to obtain a discrete

measure. Finally, facing the lack of an optimal measure, some researchers directly use indi-

vidual choices such as receiving home care or residing in a nursing home as the health state

(see for instance Barczyk and Kredler (2018) or Kopecky and Koreshkova (2014)).

As the aforementioned papers, we treat health transition as exogenous to health investments

although we allow it to depend on the education level. An alternative approach considers

investments in health capital, which in turn decreases the likelihood of future worse health

(see for example Yogo (2016) or Ozkan (2014)). This setup would force us to estimate health

groups and transition within a structural model with health investments rendering the exercise

much more complex.

Moreover, this paper relates to an extensive literature that proposes econometric methods

to analyze different issues in health economics (see Jones, 2000, for a survey). Closely related

to our paper is Deb and Trivedi (1997) who show that a finite mixture of negative binomials,

characterizing “healthy” and “ill” individuals, explains counts of medical care utilization by

the elderly in the U.S. better than previously proposed specifications. They, however, do not

classify individuals into the aforementioned categories and disregard health dynamics. In con-

trast, Contoyannis et al. (2004) stress the importance of health persistence using a dynamic

panel ordered probit model for self-reported health.

Additionally, we contribute to a growing literature that summarizes health variables into

a single index that explains most of the variation in health-related variables (see Searle et al.,

2008). Regarding the HRS, Yang and Lee (2009) compute a frailty index based on chronic con-

ditions, ADLs, IADLs, depressing symptoms, self-reported health, and obesity. Nonetheless,

its continuous nature prevents researchers to include it in structural models. One exception is

Bound et al. (2010) who considers health as a continuous latent variable and include it into

a structural model to analyze retirement. To be able to solve the model, they assume that

individuals are completely unable to self-insure against medical expenses.

On the econometric modeling side, our paper closely relates to Todd and Zhang (2020)

who also consider discrete latent states across which individuals can move over time. They

use the latent states to represent types of individuals according to personality traits and un-

observed educational and professional characteristics in order to understand educational and

occupational choices. Given the context, our latent model needs to accommodate a more flex-
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ible specification of transition probabilities across states. In their setting, the probability of

switching to a different state is independent of the state from which you transition. In contrast,

in our context, this assumption would imply that the probability of recovering from extreme

bad health (impaired) is the same as the probability of recovering from intermediate health

(physically or mentally frail) which is not supported by the data.

Finally, our paper contributes to the recent panel data literature on group clustering such

as Wang et al. (2018) who allow for heterogeneous-across but homogeneous-within groups

slope coefficients. While our set-up also features unobserved individual health status classified

within groups, we explicitly identify their changes across time. Similarly, Bonhomme and

Manresa (2015) restrict individuals to belong to the same group forever but allow the group

characteristics to change over time. In our context, this feature forces every individual in a

group to have the same dynamics. Using the physically impaired as an example, their model

would imply that either everyone that is physically impaired remains physically impaired, or

everyone recovers, or everyone gets worse. While this characteristic makes a lot of sense in

their application, it is unrealistic in our setup. With a different objective, Cunha et al. (2010)

propose a structural model for skill formation. Our paper relates to theirs in the non-lineal

filtering of unobserved variables, though ours are discrete in nature, and, since our model is

not structural, there is no need for identifying unobserved optimal decisions.

The rest of the paper is structured as follows. We briefly describe the HRS data in Section

2. Section 3 presents the econometric model and the estimation strategy. Next, we present the

main results in Section 4 and we compare our proposed classification with alternative ones in

Section 5. Finally, Section 6 concludes.

2 HRS and I-ADLs

Our main dataset is the RAND HRS Longitudinal File which is a clean, easy-to-use data

product containing information from Core and Exit Interviews of the Health and Retirement

Study, conducted by the University of Michigan.4 It contains subjective and objective indica-

tors of health, as well as demographic and economic characteristics, of a representative panel

4Version P. Produced by the RAND Center for the Study of Aging, with funding from the National Institute on

Aging and the Social Security Administration. Santa Monica, CA (August 2016). The HRS is sponsored by the

National Institute on Aging (grant number NIA U01AG009740) and is conducted by the University of Michigan.
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of US households surveyed biannually from 1992 to 2014. In addition, the HRS exit inter-

view records the death of the individual and includes answers from a proxy informant. The

completeness of this data source has led to its omnipresence in the recent literature.

Since not all the variables used in the estimation are available for early waves, we restrict

the sample to ten waves, from 1996 until 2014. Moreover, to focus on health needs, we select

individuals over 60 years old. The final sample, after excluding individuals whose education,

gender, or age are missing (<0.1% of observations), consists of 159,025 interviews (includ-

ing exit waves), which corresponds to 27,369 individuals followed on average for six waves

(12 years). The composition of the sample reflects changes in survival probabilities. Not sur-

prisingly, while the median age is 72 years, the share of individuals is decreasing in age as

they die. Likewise, females account for 58% of the sample as their life expectancy is higher

than the males’ one. In terms of education, 72% of individuals completed high school which

constitutes 74% of the sample due to its superior life expectancy.

The HRS provides dozens of health-related variables, but we restrict our focus to individ-

ual’s ability to perform ADLs and IADLs to infer their health status. ADLs were proposed by

Katz et al. (1963) as a measure of how independent a patient is, and consequently, they include

very basic activities such as if they can walk or dress. IADLs, in contrast, consist of activities

more closely related to cognition as the ability to use a phone or controlling her medication.

These variables relate to the need for LTC which is the dimension of health we aim to identify.

Although our model could incorporate more information, reducing the set of variables eases

the interpretation of the groups. Besides, by excluding other variables, we can use them to

compare the performance of our classification against other alternatives.

Precisely, we employ twelve binary variables, denoted as I-ADLs, which include six ADLs

and six IADLs that describe whether individuals have any difficulty performing these types of

basic tasks. We extract this information from the HRS questionnaire to which respondents

select one out of six possible answers: Yes and Can’t Do that we label as 1, No to which we

assign a value of 0, and Don’t Do, Don’t Know, and Refuse to answer, which are recorded

as missing. Table 1 defines the activities included in the HRS and provides the proportion

of observations in which an individual declares to have difficulties performing each of them.

The most common ADL is not being capable of dressing (12%) whereas eating is the ADL

that fewer individuals report having difficulties with (5%); at the same time, the frequency

of IADLs differs across activities from 5% of respondents who claim to face problems when
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taking medications to 15% that struggle reading a map. Table 1 also indicates that 21% of

individuals report difficulties with at least one ADL; meanwhile, 23% of them encounter prob-

lems when they carry out one or more IADLs. Altogether, almost 30% of respondents report

difficulties with at least one I-ADL.

[Table 1 about here.]

The HRS also includes a question to qualify respondent’s self-reported health (SRH). Since

another strand of the literature hinges on subjective measures of health to classify individuals,

the last five columns of Table 1 compare this measure with the answers related to ADLs and

IADLs. Not surprisingly, we observe that as people report worse health, they are more likely

to have problems with I-ADLs. Nonetheless, the importance of each activity differs. In par-

ticular, individuals reporting poor health are not able to walk, dress, or bathe with around

40% probability, while for the remaining three ADLs the corresponding figures barely sur-

pass 30%. Similarly, difficulties with IADLs are diverse within the worst self-reported health

groups: 50% of individuals report difficulties to shop for groceries whereas only 20% en-

counter complications to take their medications.

3 Econometric model

We have an unbalanced panel of individuals i = 1, . . . , N followed for ti = 0, . . . , Ti

periods which correspond to ages ai0, . . . , a
i
Ti

. For each individual, we observe K dummy

variables corresponding to each I-ADL across time (x1,i,t, x2,i,t, . . . , xK,i,t), provided the in-

dividual is alive and interviewed. All or some of the variables for a given individual who is

alive can also be missing for some period ti. We take missing observations into account under

the assumption that they occur completely at random, but we abstract from them in the model

description to simplify the exposition.

We assume that the main source of heterogeneity in the population is represented by a

finite number of possible health groups or clusters which are not observed by the researcher.

Individuals belong to each cluster with a probability that depends on education, e; age, a;

gender, s; and the current health cluster but it is independent of the individual’s previous

health (Markov first-order property). Besides transiting across health groups, individuals may

also die, which we represent as an observable and absorbing state, D.
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Specifically, we consider that individual i at time t belongs to a health group hi,t out of

H possible groups. Given her group, g, the probability of facing difficulties with the k’th I-

ADL, say xi,k,t = 1, is µk,g. Under the assumption that I-ADLs are independently distributed

conditional on the health status, the joint distribution of xi,t = (x1,i,t, x2,i,t, . . . , xK,i,t)
′ is then

characterized by

p(xi,t|µg, hi,t = g) =
K∏
k=1

µ
xk,i,t

k,g (1− µk,g)
1−xk,i,t , (1)

where µg = (µ1,g, µ2,g, . . . , µK,g)
′. Therefore, individuals within the same health group have

the same probabilities of experiencing problems with an I-ADL whereas these probabilities

might vary if individuals do not belong to the same group. Similarly, the same individual

might face a different likelihood regarding I-ADLs if she changes groups during her life.

In favor of parsimony, we model health outcomes as independent across time and indi-

viduals conditional on the health group. In the case of I-ADLs, it seems plausible that their

persistent component is only due to health, nonetheless, the model can accommodate other

types of persistence if the researcher wants to extend the set of conditioning variables. To do

so, we take into account health dynamics by explicitly modeling the transition probabilities

across groups. In particular, an individual i at time t who belongs to group g transits to group

c with probability

Pr[hi,t+1 = c|ait, si, ei, hi,t = g] =
exp[fg,c(ait, si, ei)]

1 +
∑

c∈H exp[fg,c(ait, si, ei)]
(2)

where H is the set that contains the H health groups. The remaining possible event is that the

individual dies, which is an observable state that occurs with probability

Pr[hi,t+1 = D|ait, si, ei, hi,t = g] =
1

1 +
∑

c∈H exp[fg,c(ait, si, ei)]
.

This specification allows health groups to own distinct dynamics as parameters differ ac-

cording to the current health group. Moreover, to capture within-group heterogeneity, transi-

tion probabilities can depend on age, gender and education level through the function fg,c(a, s, e)

whose parametric specification is given by

fg,c(a, s, e) = β1,g,c + β2,g,ca+ β3,g,cs+ β4,g,ce+ β5,g,c(a× s) + β6,g,c(a× e).

3.1 Posterior simulation

We aim to recover the posterior of all the parameters and the latent variables that classify

the health group to which each individual belongs at each point in time. We first need to set
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the number of health groups H . Then, we use a Gibbs sampling procedure to estimate the

econometric model. In essence, this amounts to reducing a complex problem, that is, sampling

from the joint posterior distribution of both parameters and state variables, into a sequence

of tractable ones, i.e., sampling from conditional distributions for a subset of the parameters

or latent variables conditional on all the others, for which the literature already provides a

solution.

We define H = {hi}Ni=1, where hi = {hi,t}Ti

t=1, as the collection of health groups after

the first time period, and H0 = {hi,0}Ni=1 the collection of health states in the first time period.

Further, we denote the vectors stacking the parameters of the I-ADLs process and the transition

probabilities as µ and β. In addition, we include in X the data we observe; that is, age, gender,

education, if the individual is death or alive, and her situation in terms of ADLs and IADLs.

The Metropolis-within-Gibbs algorithm involves sampling sequentially from several blocks.

Specifically, iteration m involves:

1. p(h(m)
i,0 |β(m−1), µ(m−1),X): sampling the initial condition using Hamilton (1989)’s

smoother.

2. p(h(m)
i |β(m−1), µ(m−1),X,H

(m−1)
0 ): sampling the latent health indicator for each i =

1, ..., N and t > 0 using the Kim (1994)’s smoother.

3. p(β(m)|µ(m−1),H(m),H
(m)
0 ,X): sampling the transition parameters (Metropolis).

4. p(µ(m)|β(m),H(m),H
(m)
0 ,X): sampling the Bernoulli mixture parameters (Metropolis).

The empirical results shown in the next sections are based on 40,000 draws. The first

2,000,000 draws are disregarded as burn-in and, of the remaining 4,000,000, one in every 100

draws is retained.

3.1.1 Sampling the states: Kim’s Smoother

We obtain p(hi,0|β, µ,X) for each individual from Hamilton’s smoother. Then, to sample

the health states, we apply the methodology developed by Kim (1994):

1. Using p(hi,0|β, µ,X) and the filter proposed in Hamilton (1989) we obtain p(hi,T =

g|β, µ,X) for all g ∈ H.

2. We sample hi,T from p(hi,T |β, µ,X).
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3. Similarly, we sample hi,t conditional on β, µ, X and hi,t+1, using the following result:

p(hi,t = g|β, µ,X, hi,t+1 = c) =
p(hi,t+1 = c|β, hi,t = g) · p(xi,t|µ, hi,t = g)∑
g∈H p(hi,t+1 = c|β, hi,t = g) · p(xi,t|µ, hi,t = g)

for all g, c ∈ H

As a result, in the econometric model, each individual has a different probability of be-

longing to a given group depending on her past, current, and future answers regarding I-ADLs.

Moreover, this probability incorporates information about the individuals’ death wave, as well

as her age, gender, and education. As such, this probability contains information available to

the econometrician but surely not available to the individual.

3.1.2 Sampling the transition probabilities and the Bernoulli parameters

In this step, we sample from the posterior of the parameters of the Bernoulli distributions

and the ones governing the health dynamics (µ, β) conditional on the health groups, H, and

the data, X.

Regarding priors, we consider a uniform distribution on [0, 1] for the elements of µ and a

diffuse Gaussian prior centered at 0 and covariance matrix 100 · I for β, where I denotes the

identity matrix. Hence, the posterior of the parameters governing the health dynamics and the

one driving the Bernoulli distributions are independent conditional on the latent health group.

Precisely, their posterior distributions are given by

p(µ|X,H) =
N∏
i=1

Ti∏
t=1

p(xi,t|hi,t, µ) · p(µ)

and

p(β|X,H) =
N∏
i=1

Ti∏
t=2

p(hi,t|β, hi,t−1) · p(hi,1|β) · p(β).

3.1.3 Starting the algorithm

To obtain the starting parameter values µ0 and β0 for the algorithm, we sample from an

approximate model in two steps. First, we obtain µ0 as the mode of the posterior described in

equation (1) under the assumption that hi,t are independent across both dimensions.5 Second,

we use the same model to simulate hi,t from the posterior probability p(hi,t|µ,xi,t). Given a

sample of health groups, we get the mode of the posterior of β, β0, under the assumption that

groups follow the same multinomial logit specification as in the baseline model.

5This model is also known as latent class analysis (Lazarsfeld, 1950; McLachlan and Peel, 2004).
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3.1.4 Selecting the number of groups

Two main aspects play a role when selecting the number of groups. On the one hand,

more groups might lead to a better model fit. Indeed, Bayes’s odd ratios indicate that a higher

number of groups would be the best choice. On the other hand, each additional group creates

an extra burden for structural models, which rarely use more than four. Therefore, the opti-

mal number of groups depends on the application. We focus on four groups as they can be

implemented in many models, and provide a significant improvement against two and three

groups. Nonetheless, we also provide results for the two-groups case for more complex struc-

tural models. Considering more than four groups would improve, mildly, some results; hence,

the paper provides a conservative lower bound of our model performance.6

4 Results

In this section we first describe the estimated health groups, then we explain how health

evolves with age taking into account differences in education and gender. Finally, we show

how we can use our econometric model to produce a new health classification.

In what follows, we report the median of the posterior distribution of the parameters -or

relevant functions of them.

4.1 Health Groups

Figure 1 displays the probability of reporting difficulties with each I-ADL conditional

on being in each cluster, that is µk,g in equation (1). Each panel corresponds to a different

number of clusters H . Meanwhile, each marker symbol represents a cluster and each tick in

the horizontal axis refers to an ADL (the first six) or an IADL (the remaining ones). The

higher the marker, the more likely the individual in that specific group struggles with the

corresponding I-ADL.

[Figure 1 about here.]

6Nonetheless, we acknowledge that restricting to four groups prevents the posterior distribution to achieve

consistency à la Barron et al. (1999).
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When we set H = 2, the algorithm divides individuals into one group whose probability

of declaring problems with an I-ADL is close to 0 for every I-ADL and another one which has

a relatively high likelihood of facing problems with every I-ADL. We label the former group

as healthy (circumferences) and the latter as impaired (triangles).7 We find large differences

in the probabilities of reporting difficulties across I-ADLs within the impaired group which

suggests that activities differ in their importance for categorizing individuals. For example,

in the impaired group, individuals have a 31% chance of reporting difficulties eating whereas

their likelihood of reporting difficulties with shopping is 77%.

The upper right panel of Figure 1 presents the same graph but with H = 3. There is

still one group with almost zero probability to face difficulties with any I-ADL and another

one that faces a relatively high probability of struggling with each I-ADL. Nevertheless, the

probabilities of this group are slightly higher than when we consider only two groups as some

individuals previously classified as impaired belong to the new group whose probabilities of

reporting difficulties with I-ADLs lie between the other two.

When we allow for four groups, the impaired and the healthy groups become more distant.

In addition, the middle group splits into two very different ones. One group with moderate

probabilities to suffer difficulties with an ADL but low probabilities to have problems with

IADLs, reflecting that those individuals are physically frail; and another one which consists of

mentally frail elderly in the sense that they are mostly dependent in terms of IADLs but not as

much in terms of ADLs.

Lastly, we consider H = 5 in the lower right panel. In that case, the previous groups

remain almost unchanged and the new group that emerges is extremely similar to the healthy

one, with the exception that individuals struggle reading a map. As one adds more groups,

their connection to health is even weaker; therefore, in the remainder of the paper, we focus

on the case of four groups.

While Figure 1 characterizes individuals’ health in each cluster, it is silent about the mean-

ingfulness of each I-ADLs for classifying individuals. For instance, in the case of H = 2,

the elderly in the impaired group have a much higher probability of facing difficulties read-

ing a map than eating. This comparison, however, disregards that unconditionally only 5% of

individuals struggle to eat but 16% are not able to read a map.

7As in most latent variable models, the labeling of the groups is somewhat arbitrary. Nonetheless, it eases the

presentation without altering our main findings.
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To overcome this issue, Figure 2 plots the probability of belonging to group g given that

the individual faces difficulties with I-ADL k, that is,

Pr(h = g|xk = 1) = Pr(xk = 1|h = g)
Pr(h = g)

Pr(xk = 1)
;

where the relative size of the bars indicates which I-ADL is more informative.

[Figure 2 about here.]

Following the same example, if a person has difficulties to eat, she belongs to the impaired

group with 90% probability, according to the upper left panel. Meanwhile, individuals inca-

pable of reading a map have almost the same likelihood to be part of the impaired or healthy

group, suggesting that MAP is uninformative. The pattern of these two I-ADLs remains un-

changed when H = 3 and H = 4; MAP is again uninformative while EAT is the best indicator

to classify individuals into the impaired group. This finding is in line with previous evidence

in the medical literature (see Morris et al., 2013, and references therein) which argues that

difficulties with eating best predict full dependence.

While Figure 2 characterizes the importance of each I-ADL separately for descriptive pur-

poses, their joint structure significantly contributes to identification as well. To see this, in the

third and fourth columns in Table 2 we provide the proportion of respondents who report dif-

ficulties with at least one ADL or IADL. Consistent with the previous discussion, individuals

in the impaired group are the ones more likely to present difficulties with an I-ADL; in fact,

they face problems with at least one I-ADL with almost certainty. In contrast, a healthy indi-

vidual’s probability of reporting troubles with ADLs varies between 1% and 9% depending on

the number of groups. In the third panel (four groups), the distinction between physically frail

and the mentally frail becomes salient. While in the former 87% of respondents struggle with

ADLs, the latter faces more problems with IADLs (99.4%) and less with ADLs (51.3%).

[Table 2 about here.]

Groups are not only different in terms of I-ADLs but also in terms of demographics. For

instance, if our classification correctly identifies the health status of individuals we expect

members of the impaired group to be older than those of the other groups. In that regard,

Table 2 shows impaired individuals are indeed on average nine years older than the ones in

the healthy cluster and six years older than those physically frail. Additionally, the difference
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between mentally frail and impaired is smaller which is consistent with mental conditions

caused by aging. In terms of education, high school graduates are overrepresented in the

healthy group in line with previous literature on health inequality such as Mackenbach et al.

(2008). Another interesting pattern is that worse health groups contain a significantly higher

proportion of women. These differences lead us to study heterogeneity in health dynamics

across gender and education groups.

4.2 Heterogeneous health dynamics

Indeed, the distribution of elderly across health groups changes with age, gender, and

education as can be seen in Figure 3, which plots the probability of belonging to each group

through age. The left panels correspond to high-school dropouts whereas the right ones present

the results for high-school graduates; meanwhile, the upper graphs refer to males and the lower

ones to females. The most common health status at early ages is healthy but starting around the

age of 90, impaired becomes the predominant group. Further, the physically and mentally frail

have very different dynamics: while the former is stable throughout life, the latter increases

steeply as individuals age. Although these patterns are very similar across education and

gender, the initial composition of individuals varies with demographic characteristics.

[Figure 3 about here.]

We should notice that different transitions translate into different risks, which we summa-

rize as expected time an individual at age 60 lives in each health group in Table 3. Even if more

educated individuals live longer, they spend fewer years as impaired and frail, which suggests

that richer individuals face lower health risks. For instance, in the case of males, dropouts live

80% more time (or 0.4 extra years) in the impaired state. Additionally, the difference between

males and females indicates that females expect a longer life but during those extra years, they

do not expect to be healthy.

[Table 3 about here.]

4.3 Health Classification

The estimated econometric model exploits past, present, and future information on I-ADLs

and survival to construct a parsimonious model for health groups and health transitions. There-
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fore, the econometrician has information that does not belong to the individual’s information

set. Only in the case in which individuals had perfect foresight the information set of both

coincides. To avoid making the perfect foresight assumption, from our estimates, we construct

a health classification that assumes that individuals are aware of the underlying health process

(transitions and probabilities of belonging to health groups for each I-ADL) but only know

their past and present information on survival and I-ADLs.

To do so, we use the mean of the posterior of µ and β (µ̄, β̄) to recursively update each indi-

vidual’s probability of belonging to each health group. At each age t, we obtain p(hi,t|X t−1
i , µ̄, β̄)

which represents the probability of belonging to each health group using I-ADLs information

up to time t−1. Then, we update this probability with the I-ADL information at time t to obtain

the probability of each state conditional on present and past information, p(hi,t|X t
i ; µ̄, β̄):

p(h
(g)
i,t |X t

i , µ̄, β̄) ∝ p(xi,t|X t−1
i , h

(g)
i,t , µ̄, β̄)·p(h(g)i,t |X t−1

i , µ̄, β̄) = p(Xi,t|h(g)i,t , µ̄)·p(h(g)i,t |X t−1, µ̄, β̄),

where p(Xt|h(g)i,t , µ̄) is the likelihood of current I-ADLs conditional on being in state g given

by (1). Then, we obtain forecasts of health groups given information up to t recursively,

p(h
(g)
i,t+1|X t, µ̄, β̄), starting with p(hi,0|µ̄, β̄), and using the transition probabilities p(ht+1|ht, β̄):

p(h
(g)
i,t+1|X t

i , µ̄, β̄) =
∑

h
(c)
i,t ∈H

p(h
(g)
t+1|h

(c)
t , β̄) · p(h(c)i,t |X t

i , µ̄, β̄) t ≥ 0,

To obtain p(hi,0|µ̄, β̄), we first assume that, at the age of 60, individuals’ probability of be-

longing to each health group equals the average probability at that age for their gender and

education level: p(hi,60−ai0|µ̄, β̄) ≡ 1
N60

N60∑
i=1

p(hi,60−ai0|X, a = 60, µ̄, β̄), where the average is

taken across the N60 individuals that we observe at age 60. For those that we observe for

the first time when they are older than 60, we update this probability until t = 0 using the

transitions:

p(h
(g)
i,t+1|µ̄, β̄) =

∑
h
(c)
i,t ∈H

p(h
(g)
i,t+1|h

(c)
i,t , β̄) · p(h(c)i,t |µ̄, β̄) 60− ai0 ≤ t < 0

Intuitively, to ensure that we do not use information outside the information set of each indi-

vidual, we assume they are homogeneous at the age of 60 and transition across states as the

average individual until we observe their health data for the first time.

Upon updating until the last period, we obtain p(hi,t|X t
i , µ̄, β̄) for each individual and time

period. Therefore, the weighting of that observation when we estimate moments conditional
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on being in group g corresponds to the probability for health group g. However, in our context,

the average probability of the most likely group is 0.98 (H = 2), 0.95 (H = 3), and 0.94

(H = 4); hence, these weights play a relatively minor role.

5 Comparison with alternative indices

We next compare our proposed classification with the main three alternatives used in the

literature: self-reported health, if the individual struggles with one ADL, and the quintiles of

a frailty index. In addition, we propose an alternative classification: the Cartesian product of

whether the individuals report difficulty with i) at least one ADL and ii) IADLs (excluding

MAP) as an unsophisticated proxy of our classification. This classification does not require

any estimation and can be implemented with many health surveys (e.g. SHARE or ELSA);

nonetheless, its similarity to our measure suggests that it might perform better than current

classifications.

To perform the comparison, we focus on mortality and three variables related to the fi-

nancial risk due to health: OOP medical expenditures as well as indicators of receiving home

care and residing in a nursing home. As mentioned earlier, OOP medical spending is a direct

measure of the economic consequences of health. It includes the costs -in constant 2000 US

dollars- of hospital and nursing home stays, doctor visits, dental treatments, outpatient surgery,

prescription drugs, home health care, and special facilities. Received home care equals 1 if a

medically-trained person has come to the respondent’s home to help her, and nursing home

resident takes value 1 for those individuals who live in a nursing home at the time of the

interview.

[Table 4 about here.]

The health classification most widely used in the literature relies on individuals’ self-

assessment of their health status which can take 5 different values between excellent and poor.

The self-reporting nature of the answer induces two opposing effects. On the one hand, in-

dividuals might know features of their health unknown to everyone else. On the other hand,

respondents might misjudge their health condition, bias their answers according to their mood,

or consider different benchmarks of being good. As documented by previous literature, the net

effect of these two channels and establishes that the disadvantages often offset any benefit
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(see Currie and Madrian, 1999, for a survey). Nonetheless, the first panel of Table 4 con-

firms that self-reported health has information predictive for health-related financial risk. Re-

spondents reporting worse health spend more on medical consumption and care, and are more

likely to reside in a nursing home than those who claim to be healthy. However, the difference

between the five groups varies. In particular, answering excellent, very good, and good relates

to almost the same risk, whilst fair and poor correspond to significantly more spending. Thus,

it is common practice merging the three healthiest and the two worst groups, which we denote

as self-reported health (2 groups).

Besides, grouping individuals according to whether they report difficulty with an ADL

or not is similar to our approach, specifically to identify the healthy respondents; hence the

proportions of healthy and No-ADL almost coincide. This classification, however, considers

every ADL equally important and disregards the number of ADLs, as well as difficulties with

IADLs.

Recently, Braun et al. (2017) construct a frailty index based on Searle et al. (2008) by

merging information on I-ADLs, chronic conditions, cognitive impairment, and information

about smoking and alcohol consumption to create a frailty index. Although the inclusion

of more information improves the measure of health and allows to create more groups, the

relevance of each variable is still assumed to be the same. Additionally, the resulting index

is continuous which forces to discretize it, and they do so by allocating individuals into five

equally sized groups according to the quintiles of the index. As a result, the healthiest groups

are very similar among themselves and the worst group presents the same features as those

who have an ADL in the Yes/No classification.

Finally, we propose a simple approximation to our four groups which we denote as 4-I-

ADL: classifying individuals regarding whether they struggle with at least one ADL but no

IADL, at least one IADL but no ADL, difficulties with at least one ADL and one IADL or

no reported difficulties. In contrast to the frailty index by Braun et al. (2017) who effectively

separates individuals without problems with any ADL into four groups, this method divides

respondents who recognize problems to perform at least one ADL into three groups.

Although the four aforementioned alternative classifications are highly correlated with the

health outcomes that we use, our estimated groups seem to be more differentiated as can be

seen in Table 4. For instance, using our methodology, the average difference in terms of

medical spending between healthy and impaired elderly is $9,081. According to self-reported
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health, however, an individual belonging to the worst group spends on average $3,333 more

than an individual in the healthiest group. Similarly, the fact that you report an ADL implies

that your average OOP medical spending is $2,648 higher; meanwhile, belonging to the worst,

rather than the best, frailty quintile costs $3,305. Not surprisingly, 4-I-ADL is the closest to our

classification but the distance between the best and worst groups is just a little above $4,000.

Similarly, the intermediate groups are less distinct in terms of medical spending when using

alternative classifications. For example, the increment in spending is always below $1,000

which corresponds to the minimum observed difference between our groups.

Regarding the probability of residing in a nursing home, a similar pattern arises. The

difference in the probability of residing in a nursing home between the best and worst of our

health groups is at least twice as large as when using the alternative measures. The same holds

true for home care when we look at self-reported health or struggling with at least one ADL

although, in this case, our four groups outranks 4-I-ADL just mildly.

In line with the previous discussion, our classification also identifies future death events

more accurately. In particular, an impaired individual dies with 33% probability within the

next two years whereas only 3.6% of healthy ones do not survive until the next wave. In

contrast, the difference between the healthiest and unhealthiest groups does not exceed 25

percentage points with any alternative classifications.

5.1 A horse race

Most of the time, the researcher’s objective is not be to classify individuals into distant

groups but to create a categorical index that captures most of the variation coming from health

conditional on age, gender, and education. To assess the performance of the alternative group-

ing methods in that context, Table 5 displays the R2 of the following regression:

yi,t = c+ d′i,tβ + z′i,tγ + (d⊗ z)′ θ + agei,t
(
d′i,tβ1 + z′i,tγ1

)
+ εi,t

where yi,t is the variable used as a reference, zi,t includes gender and education, and di,t is a

vector of dummy variables indicating to which group the individual belongs. As a comparison,

we also add the R2 of the regression including, in the di,t vector, dummies for each I-ADL.

[Table 5 about here.]
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Even though self-reported health only explains 1.9% of the variation of out-of-pocket med-

ical spending, it doubles the variance explained solely by age, education, gender, and their in-

teractions. Similarly, we can explain up to 2.2% by dividing individuals according to whether

they report problems with at least one ADL. Including IADLs improves the fit by one per-

centage point. Altogether, our classification explains 3.8% of the medical spending variance

when using the modal health group and 4.0% when using the set of probabilities of belong-

ing to each health group, which exceeds every alternative. The same conclusion arises from

considering the OOP spending reported in the following wave. Interestingly, our classification

explains just 0.2% less than including all the full set of dummies for ADLs and IADLs in the

regression.

The same ranking persists when we consider nursing home residency. Any measure that

includes ADLs beats self-reported health by at least five percentage points, which doubles if

we consider the 4-I-ADL classification. Further, weighting each I-ADL, our health groups

enhance the 4-I-ADL classification by 62% because it identifies the extreme dependent indi-

viduals better. Likewise, the 4-I-ADL classification performs poorly compared to the one that

includes each I-ADL separately because of the importance of each I-ADL to predict nursing

home residency. Our proposed classification explains almost four times more variance than

self-reported health and twice as much asADL:Yes/No.

In contrast to nursing home residents, most elderly who need home care preserve a high

degree of independence. As a consequence, the weighting of I-ADLs loses importance, and

our measure, although it still explains most of the variation in the outcome variable hardly

improves a classification based on ADLs. Nonetheless, it explains 50% more variance than

self-reported health and reaches the performance of including all the I-ADLs.

Finally, regarding mortality, we have constructed a division that performs better than self-

reported health. This contribution is relevant because most of the literature (see Idler and

Benyamini, 1997, for a survey) shows that subjective measures of health usually predict mor-

tality beyond objective indicators. Notably, the R2 using 4-I-ADL is 0.7 percentage points

larger than that of self-reported health which indicates that part of the improvement on the

mortality prediction relies on the incorporation of I-ADLs, while the remaining improvement

is due to the dynamics and the weighting of each I-ADL.

The Case of Europe– In order to assess how our proposed classification would perform
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in different regions, we re-estimate our econometric model using data from the English Lon-

gitudinal Study of Aging (ELSA) for the U.K. and from the Survey of Health, Ageing and

Retirement in Europe (SHARE) for 18 European countries. Given the small sample size for

some countries in SHARE, we pool countries into five different regions: Continental Europe

(Austria, Germany, Netherlands, Switzerland, Belgium, and Luxembourg); Nordic countries

(Sweden and Denmark); Mediterranean (Spain, Italy, France, Israel, and also Portugal); East-

ern Europe (Czech Republic, Poland, Hungary, Slovenia, and Estonia). In order to ease the

comparison across regions, we fix the probability of reporting I-ADLs by health group to

the ones estimated for the U.S. Nonetheless, we allow variation in health transitions to cap-

ture heterogeneous dynamics across regions. In particular, we allow the intercept of function

fg,c(a, s, e) in equation (2) to vary across regions r following:

fg,c(a, s, e, r) = β1,g,c,r + β2,g,ca+ β3,g,cs+ β4,g,ce+ β5,g,c(a× s) + β6,g,c(a× e).

Table 6 mimics Table 5 using European data. We observe that even though the health

groups are defined using the estimates from the U.S. data, the proposed classification outper-

forms other health measures used in the literature. Indeed, the relative differences between

measures remain stable despite the difference in explanatory power of each measure, suggest-

ing that fixing the parameters does not have extreme consequences. There are two caveats

when comparing Table 5 and Table 6. First, by design, attrition in ELSA and SHARE is non-

random, and those individuals who move to a nursing home are more likely to exit the sample

(Banks et al., 2011). This feature explains the low explanatory power of any health classifica-

tion for nursing home residency. Second, the time spell between two consecutive interviews in

share varies between two and six years. Hence, with the exception of mortality for which we

know the date, any attempt to compute the explanatory power in the next wave will be affected

by the heterogeneity in time between consecutive surveys across countries.

[Table 6 about here.]

5.2 Dynamics: self-reported health versus endogenous classification

Comparing groups’ dynamics generates additional insights about the differences between

grouping methods. To obtain smooth dynamics, we assume that the transition probabilities

21



of self-reported health follow a logistic specification as described by equation (2). Further-

more, to ease the comparison we focus on the best and worse group of each method, that is,

we compare healthy according to our method with excellent as reported by individuals and

impaired with poor. For completeness, we also include the two-group classification based on

self-reported health in the comparison.

The upper plots in Figure 4 report the median probability of dying in the HRS for self-

reported health and our estimated health groups. The left one corresponds to the healthiest

groups in both classifications, whereas the right one presents the results for the most unhealthy

ones. Up to the age of 80, individuals who report excellent health, as well as those classified

as healthy face a very small probability of dying. After this age, the elderly with a low survival

probability still assess their health as excellent. On the other hand, variation in age is not

as important for the healthy group as mortality less than doubles between age 80 and 98.

One possible explanation is that individuals compare themselves with relatives and friends of

the same age to assess their health status; thus, respondents of age 65 and 90 have a different

benchmark. Furthermore, while the difference between mortality rates of healthy and impaired

are sizable, this is not the case for the groups based on self-reported health, which suggests

that this method does not predict mortality at older ages. Additionally, impaired individuals

have a higher death probability than those who assess themselves in poor health regardless of

their age.

[Figure 4 about here.]

The second relevant element of health risk is persistence. If the process is not persis-

tent, health today would contain relatively little information on tomorrow’s health and survival

probabilities thus affecting individuals’ saving behavior. In addition, the persistence of each

classification sheds some light on the type of health process. In particular, we create an indi-

cator of LTC needs which is by definition persistent in contrast to other health problems such

as the flu or a sprained ankle. The lower plots in Figure 4 depict the probability of remaining

in the same group conditional on the current health group at any given age. Specifically, we

find that individuals who report excellent health in one wave have less than 40% probability

of providing the same answer in the following wave. In contrast, respondents classified as

healthy are extremely likely to remain in that state, which indicates that some non-persistent

factors might drive self-reported health. If instead, we focus on individuals in bad health, our
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classification displays a larger persistence as individuals age, in line with the idea that recov-

ery becomes harder for older individuals. In contrast, for fair and/or poor self-reported health,

individuals are more likely to report improvements in their health status as they age which

points towards changes in their health benchmark.

Lower persistence and a worse ability to predict mortality indicate that self-reported health

overestimates the uncertainty faced by individuals. The effect of this bias on individuals’

decisions depends on its severity across socio-economic groups and the specific structural

model. To shed some light on the former, Figure 5 plots the additional time that a high-

school graduate spends in the healthiest state (left-hand panel) and the unhealthiest state (right-

hand side) in expectation. While our classification indicates that high school graduates spend

around 40% more time in the healthy state and 30% less in the impaired state, these differences

at least double when using self-reported measures of health. Given that our classification

explains a larger fraction of the variance of different health outcomes, these results suggest that

self-reported health contains a measurement error correlated with education: Low-educated

individuals tend to report worse health status or high-school graduates overestimate their well-

being or both.

[Figure 5 about here.]

5.3 The asset cost of bad health

In order to show how to implement our health classification in a structural model and

its implications, we replicate De Nardi et al. (2010) to quantify the asset cost of being in

bad health across classifications. For this purpose, we solve and simulate the baseline model

of De Nardi et al. (2010) using two levels of self-reported health (as in the original paper)

and three different versions of our proposed classification. First, we consider our two-group

classification to compare the effects of our method without increasing the state space. Second,

we discretize the probability of being impaired when H = 2 into four equally spaced points.

This measure assesses the empirical relevance of probabilities and sets up a benchmark for a

four-group classification. Finally, we implement our four-group classification.

Besides the health classifications, we follow the original paper as closely as possible to ease

the comparison. De Nardi et al. (2010) estimate the model on a sample of single retirees using

a two-step procedure: in the first step, the authors estimate the processes for survival, health
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transitions, and medical expenses risk as functions of health; hence we have to re-estimate

them for every classification. In the second step, they estimate the preference parameters and

the generosity of Medicaid using the method of simulated moments. To ease the comparison,

and due to the good aggregate fit, we maintain the same parameters as in the original model.

Therefore, differences in policy functions come from differences in the health classification

and not in the preference parameters. 8

To analyze how health affects dissaving, we focus on rich female individuals because they

face a larger risk of outliving their assets and we simulate 500,000 female individuals in the

top quintile of the income distribution who are endowed with $175,000 (the median assets

of the top income quintile in the HRS for individuals between 70 and 75). We fix half of

the simulated sample to the good health state forever while the other half stays always in bad

health ruling out attrition in order to ease the interpretation of results.

[Figure 6 about here.]

The upper left panel in Figure 6 shows the median asset holdings for individuals in each

of the two subsamples when using self-reported health as in De Nardi et al. (2010). We can

see that after fifteen years in bad health a representative individual holds around 15% less

wealth than an individual who remains healthy. Under any of our proposed classifications,

the difference in the dissaving profile across health groups is much more salient. When using

our classification with two and four health groups, the representative individual who remains

impaired for fifteen years holds 30% and 64% less wealth, respectively. Differences between

using probabilities or the modal health state are relatively small because the average individual

has a 94% probability of belonging to her modal group.

6 Conclusion

As retirees age, they face large risks of requiring persistent and expensive care. The struc-

tural literature analyzing savings in retirement underlines the importance of this uncertainty to

explain the dissaving pattern of the elderly and labor supply decisions of individuals. They

8The Online Appendix gathers the parameters of the first-step estimation and results from the original paper

to assess the accuracy of the replication.
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face, however, an important empirical challenge: summarizing the information content of sev-

eral health variables into a few groups, which is a requirement for quantitative models to be

computationally feasible.

This paper develops a methodology to classify individuals into a reduced number of cate-

gories, exploiting the richness of health information available in panel surveys. By profiting

from the panel dimension of the data we estimate transitions across groups conditioning on

current health, age, education, and gender, which are of paramount importance when calibrat-

ing macroeconomic models.

We find that individuals’ health can be parsimoniously represented with four different

groups, namely, healthy, impaired, physically and mentally frail. While healthy and impaired

have the usual extreme interpretation, the distinction between physically and mentally frail

arises from the different pattern of respondents struggling with physical and cognitive tasks,

respectively. Moreover, and in line with the previous literature, our empirical findings show

that health status is highly persistent over time, but with significant differences in the dynamics

of health across demographic groups.

We then assess our proposed classification against other commonly used health measures,

finding that previous health indices are weakly related to health outcomes and medical utiliza-

tion rates. In contrast, our health groups explain a significant fraction of the variance in the

use of nursing homes, home health care, OOP medical expenses, and mortality. Moreover,

we show that using a more accurate health measure changes significantly the saving patterns

predicted by life-cycle models. In particular, self-reported health predicts a slower dissaving

of individuals in bad health compared to our classification.

Finally, we make publicly available for future research our health classification for two,

three, and four groups for future research exploiting the main retirement surveys: HRS, ELSA,

and SHARE. Its discreteness and good fit make the classification valid for most applications;

hence, it constitutes a good candidate as a unified health measure.
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Figure 4: Transition to death and persistence
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Notes: Upper plots: probability of dying per health group. Lower plots: Probability of main-
taining the same health state. RAND HRS Data; sample from 1996 to 2014 (10 waves). We
select individuals over 60 years old and we drop individuals whose education, gender or age are
missing (<0.1% of observations). The final sample consists of 159,025 interviews (including
exit waves) which correspond to 27,369 individuals followed 6 waves (12 years) on average.
The units of the y-axis are percentage points and those of the x-axis are years. This graph
corresponds to female dropouts but it is similar if we look at other socio-economic groups.
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Figure 5: Expected educational gradient across health classification
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Notes: RAND HRS Data; sample from 1996 to 2014 (10 waves). We select individuals over
60 years old and we drop individuals whose education, gender, or age are missing (<0.1% of
observations). The final sample consists of 159,025 interviews (including exit waves) which
correspond to 27,369 individuals followed 6 waves (12 years) on average. The x-axis in the
left (right) figure corresponds to the proportion of extra years in percentage points that a high-
school graduate lives healthy (unhealthy) compared to a similar high-school dropout. The
y-axis is the pdf of the posterior distribution.
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Figure 6: Comparison of dissaving across health states
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Notes: This figure represents the dissaving pattern in the model by De Nardi et al. (2010) of the
median female rich individual who stays in the healthy state from the age 75 to age 90 (dashed)
and one who has bad health from age 75 to age 90. The upper left-hand plot uses self-reported
as the measure of healthy/unhealthy; the upper right-hand plot uses our two-group classifica-
tion; the lower left-hand plot uses the probability of being healthy in our two group classifi-
cation discretized into quartiles and we label the top/bottom quartile as healthy/unhealthy the
lower right-hand plot uses our four-group classification;
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Tables

Table 1: Fraction of individuals reporting difficulties with I-ADLs by self-reported health

Variable Definition # Obs All
Self-reported health

Exc. Very Good Fair Poor

Activities of daily living (ADLs): Some difficulty...
DRESS Dressing 134,980 12.4 2.2 3.5 8.1 20.2 44.1
TOILET Using the toilet 134,785 7.6 1.0 2.1 4.8 12.1 29.2
BATH Bathing (shower) 134,949 10.0 1.6 2.3 5.7 16.0 40.3
BED Getting in or out of bed 134,900 7.9 1.0 1.4 4.3 13.0 33.2
WALK To walk across a room 134,913 9.4 1.1 1.9 5.2 14.8 39.4
EAT Eating 134,908 4.9 0.8 1.0 2.5 7.4 21.5

Instrumental activities of daily living (IADLs): Some difficulty...
MEALS Preparing hot meal 127,840 9.6 1.8 2.4 5.6 14.7 39.3
SHOP Shopping for groceries 130,313 12.8 2.2 3.1 7.7 21.0 50.2
MONEY Managing money 130,013 9.2 2.5 3.1 6.2 14.1 32.2
MEDS Taking medications 131,264 5.3 1.2 1.5 3.1 7.9 20.4
PHONE Using a phone 134,259 6.8 1.6 2.2 4.4 10.2 24.7
MAP Using a map 117,200 15.7 6.5 8.7 13.6 23.8 39.3

Some difficulties with...
ADL At least one ADL 134,366 21.1 4.0 6.9 15.6 35.6 66.0
IADL At least one IADL 103,910 23.2 10.8 14.2 24.5 47.0 74.3
I-ADL At least one I-ADL 103,663 29.6 10.8 16.1 28.2 51.3 78.5

Notes: RAND HRS Data; sample from 1996 to 2014 (10 waves). We select individuals over
60 years old and we drop individuals whose education, gender or age are missing (< 0.1% of
observations). The final sample consists of 159,025 interviews (including exit waves) which
correspond to 27,369 individuals followed on average 6 waves (12 years). The column All
indicate the percentage of observations who have problems with a given I-ADL. The last five
columns present the same percentage by group of self-reported health (excellent (Exc.), very
good (Very), good, fair and poor).
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Table 2: Summary statistics for estimated health clusters

Group Share ADL IADL Age Female Dropout
Average

100 21.3 33.2 72.7 57.4 27.2
2 groups

Healthy 85.6 9.7 21.7 71.1 56.0 23.0
Impaired 14.4 89.0 99.9 78.0 68.0 46.4

3 groups
Healthy 77.2 4.2 13.7 70.7 55.1 21.4
Physically frail 16.5 70.9 97.0 75.7 65.6 41.3
Impaired 6.3 97.0 99.9 80.6 67.0 49.2

4 groups
Healthy 78.4 4.1 14.5 70.8 55.2 21.8
Physically frail 11.8 87.4 98.4 74.6 67.1 36.6
Mentally frail 4.9 51.3 99.4 79.5 62.9 52.7
Impaired 5.0 100.0 99.9 80.5 69.5 48.8

5 groups
Healthy 61.1 0.8 2.1 70.1 51.0 17.0
Map 24.3 31.8 70.4 73.8 68.7 39.0
Physically frail 6.8 97.0 99.9 74.6 68.7 38.4
Mentally frail 3.9 62.1 99.7 80.4 64.2 51.3
Impaired 3.8 100.0 99.9 81.3 69.0 49.2

Notes: RAND HRS Data; sample from 1996 to 2014 (10 waves). We select individuals over
60 years old and we drop individuals whose education, gender or age are missing (<0.1% of
observations). The final sample consists of 159,025 interviews (including exit waves) which
correspond to 27,369 individuals followed 6 waves (12 years) on average. Results reported in
percentage points. See Section 3 for details about the econometric model and the estimation
procedure.
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Table 3: Expected forthcoming time in each health group by education and gender at age 60.

Education Healthy +
Physically

+
Mentally

+ Impaired =
Life

frail frail Expectancy

Females
Dropouts 12.7 3.6 1.9 1.7 19.9

(0.2) (0.1) (0.1) (0.1) (0.2)
Highschool 17.6 3.1 1.1 1.1 23.0

(0.1) (0.1) (0.0) (0.0) (0.1)
Males

Dropouts 12.4 2.2 1.3 0.9 16.7
(0.2) (0.1) (0.1) (0.0) (0.2)

Highschool 16.7 1.9 0.7 0.5 19.8
(0.1) (0.1) (0.0) (0.0) (0.1)

Notes: RAND HRS Data; sample from 1996 to 2014 (10 waves). We select individuals over
60 years old and we drop individuals whose education, gender or age are missing (<0.1% of
observations). The final sample consists of 159,025 interviews (including exit waves) which
correspond to 27,369 individuals followed 6 waves (12 years) on average. Results reported
in years. In parentheses we report the standard deviation of the posterior distribution. See
Section 3 for details about the econometric model and the estimation procedure.
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Table 4: Long-term care needs by health classification

OOP med Nurs-h Received Dead IADL>0
Share spending resident h-care next waveADL>0IADL>0 w/o MAP

Self-reported health

Excellent 9.2 1,805 0.6 2.5 2.4 3.5 9.4 4.5
Very good 28.0 2,129 0.7 3.9 3.2 6.4 13.1 6.2
Good 32.2 2,764 1.3 7.4 5.5 14.9 22.5 12.8
Fair 21.0 3,594 3.0 14.2 11.2 34.6 44.1 30.1
Poor 9.4 5,138 7.9 28.1 24.6 65.2 71.2 60.1

ADL: Yes/No

No 79.6 2,357 0.3 5.3 4.7 0.0 16.7 7.8
Yes 20.4 5,005 8.8 25.7 19.0 100.0 69.5 59.2

Frailty Index Quintiles

Lowest quintile 19.6 1,743 0.1 1.5 1.5 0.1 2.8 0.7
2 19.8 2,062 0.1 3.2 2.8 0.9 8.4 2.4
3 20.8 2,524 0.2 5.6 4.9 4.7 15.5 5.4
4 19.0 3,017 0.7 10.3 8.4 21.9 31.8 16.7
Highest quintile20.8 5,048 8.9 25.9 20.6 72.5 77.1 64.6

4-I-ADL (i, j): ADL=i & IADL=j, IADL without MAP

(0,0) 73.4 2,274 0.1 4.5 3.9 0.0 9.0 0.0
(1,0) 8.3 3,023 0.6 13.6 8.7 100.0 17.2 0.0
(0,1) 6.2 3,337 2.6 14.0 13.7 0.0 100.0 100.0
(1,1) 12.1 6,371 14.5 34.7 26.2 100.0 100.0 100.0

2 groups (mode)

Healthy 86.1 3,122 0.2 5.7 4.1 9.5 14.6 6.6
Impaired 13.9 7,778 13.5 30.6 21.6 87.8 93.2 90.6

4 groups (mode)

Healthy 77.6 3,330 0.1 4.8 3.6 3.9 11.0 3.3
Physically frail 13.0 4,524 1.5 19.2 10.9 80.0 59.2 50.0
Mentally frail 5.1 5,780 7.3 22.7 18.0 51.3 99.0 96.8
Impaired 4.3 12,411 31.8 41.4 33.1 100.0 99.9 99.9

Notes: Results reported in percentage points, except for OOP medical spending which is re-
ported in 2000 US dollars. See Section 2 for details about the data and Section 3 for details
about the econometric model and the estimation procedure.
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Table 5: Fraction of explained variance by health classification

OOP medical Nursing home Received
Mortality

spending resident home care

Wave Current Next Current Next Current Next Next

No health 0.7 0.8 4.3 5.1 3.6 3.5 5.9
SRH (2 groups) 1.5 1.3 6.0 6.2 7.3 6.2 9.3
SRH (5 groups) 1.9 1.5 7.1 6.8 9.0 7.3 11.2
ADL: Yes/No 2.2 1.7 11.4 9.8 9.9 7.5 9.8
Frailty index 2.7 2.3 12.6 11.5 11.6 9.6 12.1
All I-ADL dummies 4.0 2.7 31.5 20.2 13.1 8.7 13.1
4-I-ADL 3.2 2.5 16.2 13.8 12.3 9.1 11.9
2 groups (mode) 2.6 2.2 15.8 13.7 11.3 8.2 11.4
4 groups (mode) 3.8 2.5 26.3 18.2 12.8 9.1 12.8
4 groups (probabilities) 4.0 2.7 27.3 19.0 13.5 9.6 13.2

Observations 118,706 94,544 118,706 94,544 117,408 93,268 102,292

Notes: RAND HRS Data; sample from 1996 to 2014 (10 waves). We select individuals over
60 years old and we drop individuals whose education, gender or age are missing (<0.1% of
observations). The final sample consists of 159,025 interviews (including exit waves) which
correspond to 27,369 individuals followed 6 waves (12 years) on average. Then, we restrict the
sample to those observations that can be classified according to all criteria. Results correspond
to the R2 (in percentage points) of the following regression::

yi,t = c+ d′i,tβ + z′i,tγ + (d⊗ z)′ θ + agei,t
(
d′i,tβ1 + z′i,tγ1

)
+ εi,t

where yi,t is the variable used as a reference, zi,t includes gender and education, and di,t is a
vector of dummy variables indicating to which group the individual belongs.
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Table 6: Fraction of explained variance by health classification: SHARE and ELSA

OOP medical Nursing home Received Mortality
spending resident home care in 2 years

No health 0.5 0.4 6.7 4.4
SRH (2 groups) 0.7 0.6 10.2 6.5
SRH (5 groups) 1.0 0.9 11.7 8.3
ADL: Yes/No 1.2 1.3 11.7 6.9
Frailty Index 1.2 1.2 13.1 8.1
All I-ADL dummies 1.9 2.8 16.6 9.5
4-I-ADL 1.5 2.0 15.6 8.9
4 groups (mode) 1.9 2.7 15.6 9.4
4 groups (probabilities) 2.0 2.8 16.2 9.6
Observations 74,196 219,989 61,174 159,121

Notes: SHARE and ELSA Data; sample from 2002 to 2017 (7 waves). We select individuals
over 60 years old and we drop individuals whose education, gender or age are missing (<0.1%
of observations). The final sample consists of 71,416 individuals. Then, we restrict the sample
to those observations that can be classified according to all criteria. Results correspond to the
R2 (in percentage points) of the following regression:

yi,t = c+ d′i,tβ + z′i,tγ + (d⊗ z)′ θ + agei,t
(
d′i,tβ1 + z′i,tγ1

)
+ εi,t

where yi,t is the variable used as a reference, zi,t includes gender and education, and di,t is a
vector of dummy variables indicating to which group the individual belongs. ELSA does not
report data on OOP medical expenditures.
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