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Abstract

Borewells for groundwater extraction have proliferated across South Asia, en-
couraged by subsidized electricity for pumping. Because borewells operating near
one another experience mutually attenuated discharges and higher failure rates,
farmers deciding whether and when to drill interact strategically with potentially
many neighbors through the spatial network of agricultural plots. To incorporate
such interactions in policy counterfactuals, we estimate a dynamic discrete network
game of well-drilling using plot-level panel data from two states of southern India.
We then compare the current regime of free (but rationed) electricity against an
annual tax on all functioning borewells that fully defrays electricity costs. We find
that the cost-recovery tax, by reining in over-drilling, eliminates a deadweight loss
of 135 US$ per acre of land with groundwater potential, 23% of the fiscal cost of the
subsidy; nearly half of this social loss can be attributed to the externality. Further,
the socially optimal tax rate, which also addresses the local negative externality, is
24% higher than the annual electricity costs. Our estimates also suggest a practical
compensation scheme to build farmer support for electricity price reform.
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1 Introduction

Private investment in land often affects the returns to investing in neighboring land, but
less so for more distant land. Such localized externalities induce strategic interactions,
where each landowner’s irreversible investment depends on past and expected future in-
vestments of their neighbors, who are in turn influenced by the decisions of their neighbors,
and so on. This network-game structure presents a significant methodological challenge in
quantifying the aggregate welfare implications of a policy change. This paper develops a
tractable approach to estimating policy counterfactuals for the case of borewell investment
in southern India, a context in which both local spillovers and government intervention
in private investment decisions are particularly salient.

Groundwater has become the dominant source of irrigation in India, driving increased
agricultural intensification (Jain et al., 2021) and rising rural income (Sekhri 2014). To ex-
tract this resource, millions of borewells have sprung up in recent decades, most equipped
with submersible electric pumps (Shah 2010; Jacoby 2017). As a borewell operates, the
water table around it drops, thus creating a conical draw-down region centered on the
pump. If two borewells are close enough to one other, their respective cones of depression
overlap, reducing the water flow from each well and possibly contributing to well failure,
i.e., when discharge is too low to warrant any cultivation whatsoever.! Well interference
becomes especially salient in the dry season, during which groundwater is typically the
sole source of irrigation. In our study areas — two drought-prone districts in the south-
ern Indian states of Andhra Pradesh and Telengana — these local interference effects
dominate the more spatially and temporally diffuse aquifer-level externalities commonly
associated with groundwater extraction.?

Most Indian states provide farmers free or highly subsidized electricity to run their
pumps, artificially inflating the economic returns to well-drilling.®> Groundwater devel-
opment has thus devolved into “drilling for subsidies”, a form of rent-seeking in which

smallholders sink costly wells that would not be economically viable absent these policy-

IBlakeslee et al. (2020) find large negative economic impacts of well failure in the South Indian state
of Karnataka.

2See Sears and Lawell (2018) for a recent review of the large economics literature surrounding the
two principal common pool externalities in the context of groundwater, namely: (1) the pumping cost
externality whereby one user’s pumping, by lowering the watertable in the aquifer, increases the pumping
cost of other users, and (2) the strategic (or stock) externality, whereby any groundwater not extracted
by a user today may not be available to extract by that user in future years. These externalities are
conceptually linked inasmuch as they depend on groundwater being an exhaustible resource. As we
discuss in Section 2, groundwater is largely a renewable resource in our context.

3In 2013, Indian state governments spent US$11.4 billion to subsidize agricultural power, although
this figure likely understates the fiscal drain (Sidhu et al., 2020). Since metering of usage is rare, subsidies
generally take the form of low or nonexistent flat charges.



induced distortions (Badiani-Magnusson and Jessoe, 2018). By driving the gross return for
the marginal borewell below the private cost of drilling plus the fiscal cost of the subsidy,
government policy exacerbates the welfare losses already created by well interference.

Given local externalities, evaluating a policy reform, such as electricity cost-recovery,
requires incorporating strategic interactions between neighboring farmers arrayed in a
spatial network. Building on the literature surveyed in Aguirregabiria and Mira (2010),
we thus develop and estimate a dynamic discrete borewell investment game played on
a large (but necessarily bounded) map representing the network of adjacent agricultural
plots in the locality. Structural estimation requires taking into account each plot owner’s
beliefs about the temporal evolution of borewells on all relevant plots, a potentially vast
state-space. To avoid this “curse of dimensionality”, we make the bounded rationality
assumption that investment decisions depend only on beliefs about borewells located
in adjacent plots. This allows for a novel and tractable estimation strategy that we
take to panel data collected in our southern Indian setting. Given parameters of the
production technology and other model primitives,? we first simulate investment on the
plot network map for many periods until a steady state is reached and then compute
beliefs based on the temporal evolution of wells in each plot owner’s adjacency, i.e., the
collection of bordering plots determining the local externality. We nest the full solution
to this adjacency equilibrium within a Simulated Method of Moments (SMM) estimation
algorithm, matching the observed aggregate annual drilling rates by plot size and by the
number of currently functional borewells on the plot to their model-based counterparts.
As a validation, we use data simulated from the model to closely replicate the reduced-
form impact of neighboring borewells on the propensity to drill, a moment not explicitly
targeted in our estimation.

Based on the structural estimates, the equilibrium social value of land with ground-
water potential is only around 30% of its private value; 70% is accounted for by the
capitalized value of the electricity subsidy. If, counterfactually, borewell owners had to
make annual payments to fully cover the cost of electricity for pumping, borewell density
would fall by 52% and the social value of land would rise by 8,800 Rs/acre (US$ 135). The
deadweight loss of free electricity thus amounts to 23% of the fiscal cost of the subsidy. To
quantify how the local externality exacerbates this inefficiency, we construct an alternative
economy with no well interference and find that deadweight loss in that counterfactual

world is only 12% of fiscal cost. Further, we investigate the socially optimal Pigouvian

4Specifically, we obtain well interference effects in a first-stage by jointly estimating the probability of
well failure and the probabilities of different well flow states as functions of the number of neighboring
(functioning) borewells.



borewell tax. While this tax exceeds the cost of electricity by 24%, social welfare is not
much higher than in the cost-recovery equilibrium. In other words, once electricity is
correctly priced, borewell density decreases to the extent that well interference becomes
economically unimportant at the margin. Lastly, we examine the distributional impli-
cations of electricity cost recovery, and borewell taxation more generally, suggesting a
simple compensation scheme to reduce inequities and build political support for reform.

Despite the prevalence of local investment spillovers, especially in natural resource
economics, the literature on dynamic network games remains sparse. To our knowledge,
the only other attempt to estimate such a model is Hodgson (2024) in the context of oil
field exploration, where the externality is informational and the key inefficiency is thus
one of free-riding rather than over-investment.> All other empirical applications of net-
work games are static (see, e.g., Acemoglu et al. 2015, Xu 2018, Konig et al. 2017). In
our setting, a static model in which all plot owners sink their borewells at once would not
account for the empirically important and inherently dynamic feature of well failure. A
static model also cannot speak to the short-run distributional implications of a borewell
tax. By contrast, our dynamic model allows us to calculate how such a policy change
impacts landowners with and without functioning borewells at baseline along the entire
transition path to the new steady state, thereby informing the design of practical com-
pensation schemes. More fundamentally, welfare analyses of policies affecting irreversible
investments, such as borewells, call for both a dynamic model and the consideration of
transition paths, as comparisons of long-run steady states can be misleading (Domeij and
Heathcote, 2004). Finally, a dynamic model enables us to exploit data on drilling choices
conditional on the current number of functioning borewells — i.e., the dynamic decision
rule — for identification of structural parameters.

As the first to incorporate well interference externalities in a full dynamic general
equilibrium model of drilling decisions, this paper also contributes to the economics of
groundwater extraction, a literature focused almost exclusively on the United States and,
to a lesser extent, on the world’s largest groundwater user, India. Pfeiffer and Lin (2012)
considers well interference externalities in the High Plains Aquifer of Kansas whereas Sears
et al. (2022a) studies strategic interactions among neighboring extractors in California.
Both of these papers are concerned with the intensive margin (pumping) as opposed to the
extensive margin (drilling) and neither models the spatial network game. Groundwater
research in India focuses on the the deep alluvial aquifers of the northwest, where ‘min-

ing’ of fossil groundwater is a serious concern (see Fishman et al. 2011). In this context,

®The pioneering work of Lin (2013) in the same context is limited to studying strategic interactions
between isolated adjacent pairs of oil parcels thus abstracting from the spatial network problem.



the calibration study of Sayre and Taraz (2019) combines decisions about both ground-
water pumping and investment in deeper wells within a partial equilibrium framework,
i.e., ignoring well interference externalities. Ryan and Sudarshan (2022) econometrically
estimates the welfare cost associated with over-pumping in Rajasthan. By focusing on
the aquifer-wide pumping cost externality (see footnote 2) and by taking the number of
borewells as fixed, their paper abstracts from both well interference and from drilling
costs. Ryan and Sudarshan (2022) finds that electricity rationing to agriculture leads
to roughly the socially optimal quantity of groundwater pumping on average. Similar
rationing in our study areas also limits over-pumping, so that whatever intensive margin
distortion remains is likely to be small in comparison to the extensive margin distortion
that we emphasize.

More broadly, this paper contributes to a growing literature estimating the value of
water in the context of missing markets. A non-exhaustive listing of recent work includes:
Rafey (2023), Donna and Espin-Sénchez (2023), and Hagerty (2023) on surface irrigation;
Carleton et al. (2023) and Sekhri (2022) on the role of international trade; and Burlig et
al. (2021) and Bruno and Jessoe (2021) on the price-elasticity of groundwater demand.

The next section of the paper describes the setting and data. Section 3 lays out the
model of borewell investment and local externalities. Section 4 discusses the structural
estimation procedure and presents the results. Section 5 considers counterfactual policies,

including the optimal borewell tax, and Section 6 concludes the paper.

2 Setting and Data

2.1 Context

Before its partition into Andhra Pradesh (AP) and Telangana in 2014, unified Andhra
Pradesh was one of the most important agricultural states of India, accounting for about 7
percent of gross cropped area nationally, roughly half of which was irrigated with ground-
water. However, as argued by Kumar et al. (2011), the economic efficiency of groundwater
extraction in unified AP has decreased substantially. A tripling in the number of borewells
from 1995 to 2010 to more than 1.5 million (Jacoby 2017) has led to high rates of well
failure, lower irrigated area per well, and higher energy requirements for groundwater
pumping due to well interference. Meanwhile, power supply to agriculture for running
electrical pumps has become a political issue all over India. In 2004, a newly elected
government of unified AP abolished flat rate electricity charges, which had covered just

11 percent of the provision cost, making agricultural power free to farmers, a move swiftly



followed by the major states of Tamil Nadu, Karnataka, and Punjab.® Currently, farmers
in AP and Telangana typically run their pumps continuously during the 7 to 9 hours per

day when this free electricity is made available for agricultural use (Fishman et al., 2023).

Figure 1: WATER TABLE FLUCTUATIONS: 1998-2014

350 0.00

Lingar Wator lave(]

— Fointall —c— Wator lovel ——— Trend

1.00

300 2.00

- 3.00

- 400

- 5.00
END LINE

- 6.00

|5
o
o

- 7.00
800
ﬂ | 9.00

10.00
11.00

12.00

m bgl

Rainfgll in mm .

Depth to water level

13.00

i - 14.00
I

15.00

y
v
3
=
B
=

Notes: Average depth to water table in meters below ground-level from all state observation
wells and rainfall in millimeters by month (Source: Andhra Pradesh Groundwater Department,
http://apsgwd.gov.in/swfFiles/reports/state/monitoring.pdf; last accessed Feb. 10, 2016).

In contrast to northwest India, where deep groundwater reserves are available to mine,
much of south India is underlain by shallow hard rock aquifers with limited groundwater
storage capacity. Recharge from monsoon rains is mostly depleted through pumping dur-
ing the subsequent dry season. Figure 1 indicates that the time-series of depth to water
table across unified AP, a measure of overall resource depletion, is dominated by intra-
annual variability, showing practically zero trend from 1998-2014, the most recent years for

which we have consistent data before the partition.” Because of their low transmissivity

6Shah et al. (2012) estimates that these subsidies in AP amounted to 94% of the gross value of its
agricultural output before partition. The corresponding figure in the more agriculturally productive state
of Punjab is only 12%. Note that Shah et al. (2012) uses an annual electricity cost per borewell of about
US$450 for the entire state of AP circa 2010, whereas we obtain a much more conservative figure of
US$180 (8,500 Rs) in our study areas (see Appendix A).

"Hora et al. (2019) argues that such water table trends are biased upward by relying on surviving
(i.e., non-failed) observation wells to measure groundwater levels across time. Indeed, our analysis of well
failure in Appendix F is consistent with a secular, but rather slow, decline in water tables in our study
area.



(velocity of horizontal groundwater flow), hard-rock aquifers accentuate well interference.
In our setting, an interwell spacing of at least 250 meters is recommended to avoid in-
terference effects (Chandrakanth 2015). Blakeslee et al. (2020) detail the process of well
failure in hard-rock aquifers, highlighting local hydrogeological features, i.e., sub-surface
fractures fed from different sources of recharge, rather than aquifer-wide depletion. In our
setting, therefore, well interference is the predominant groundwater pumping externality,

one that is both localized and static, affecting only current groundwater availability.

2.2 Household surveys and representative plot sample

Our data come from the drought-prone districts of Anantapur (Andhra Pradesh) and
Mahabubnagar (Telangana), originally the backdrop for the weather insurance study of
Cole et al. (2013). As shown in Giné and Jacoby (2020), groundwater availability and
the related development of groundwater markets in these drought-prone districts is ex-
tremely limited compared to districts that receive the average amount of annual rainfall
and, especially, to those in water-abundant coastal AP. Only farmers with access to a
functioning borewell can cultivate during the dry (rabi) season, when they mainly grow
paddy, groundnut, maize, and mulberry in Anantapur and paddy and groundnut in Ma-
habubnagar. In the wet (kharif) season, farmers in both districts grow primarily paddy,
sorghum, and groundnut and use groundwater to supplement monsoonal rainfall.

Highly fragmented landownership also contributes to well interference externalities.
To obtain the typical spatial layout of separately owned plots, we digitized cadastral
maps for at least one village in each of the 12 mandals (sub-districts or counties) covered
by our survey (see Appendix B). In all, we have 14 such village maps containing 12,330

land parcels; the median plot size is only 2.02 acres.

Representative plot sample In 2017, we were able to re-interview 1,436 of 1,488
randomly selected farm (landowner) households originally surveyed in 2010 by Cole et al.
(2013). The 2017 survey includes a history of well-drilling attempts on and around each of
the household’s plots since 2011 and records every borewell present on each plot regardless
of whether currently functional (i.e., has non-negligible discharge) or even dismantled.
From this information, we construct a retrospective five-year panel of drilling attempts and
the number of functional borewells on 2,862 plots, referring to this as the representative
plot sample. Highlighting its representativeness, the median plot area of 2.00 acres in this
sample virtually coincides with the median area of plots in the 14 digitized cadastral maps

mentioned above. The 2010 and 2017 surveys also collected data on discharge or flow for



every functioning borewell for the 2009-10 and 2016-17 rabi seasons (see Appendix F).

Timeline Figure 2 provides an event timeline to guide our empirical and theoretical
analyses. A ‘“year” begins with the onset of the monsoon (initiating the kharif or wet
season), followed by rabi (dry) season planting once the rains have ceased. Borewells are
drilled in the pre-monsoon (summer) season when water tables are at their lowest; this
assures farmers that, if successful, the new borewell will yield groundwater throughout
the rabi season. New borewells are thus available for pumping only in the year following
a successful drilling attempt, with year ¢ “success” defined as being functional at least
during year ¢ + 1. Consistent our survey’s elicitation of whether a borewell is functional
or not, we assume that failures are realized during rabi season planting. For the plot-level
retrospective panel, we drop data from 2017 because, as the survey was administered
in May, not all drilling attempts or well failures that occurred in 2017 were necessarily

captured in the dataset.®

Figure 2: TIMELINE
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Drilling patterns There were 526 attempts to drill a borewell made on 437 plots be-
tween 2012-16, only 197, or 37.5%, of which were successful (i.e., resulted in a functional
borewell).” Panel (a) of Figure 3 shows annual drilling rates by the number of function-

ing borewells and plot area quintiles. While the propensity to drill is higher on plots

8For consistency with the adjacency survey panel (see below), we also drop data from 2011.

9Multiple annual drilling attempts occurred in 134 (25%) of these 526 cases (with a mean of 2.5
attempts conditional on a multiple attempt). Since most of these multiple attempts likely entail farmers
drilling on different portions of their plot in search of a good water source, rather than attempting
to sequentially drill multiple successful wells in one year, we code them all as a single ‘attempt’ (and,
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Figure 3: DRILLING ATTEMPTS
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Notes: Average annual drilling attempt rate by plot area quintiles and by number (n)
of functioning borewells on the plot. Panel (a) is for the representative sample of plots;
panel (b) is for active plots only (i.e., those which had any functioning borewell or drilling
attempt during 2012-16).

with more functioning borewells, this may reflect heterogeneity in groundwater potential:
where drilling is profitable, there is both more drilling and more functioning borewells.
Panel (b) restricts attention to plots in which at least one drilling attempt was made
during 2012-16 or that already had at least one functioning borewell in 2012. The owners
of such “active” plots (39% of the representative sample) evidently believed that they had
potential for groundwater development. The “active” plot sample shows a negative rela-
tionship between functioning borewells and drilling, consistent with diminishing marginal
returns to investment. Thus, conditional drilling moments will provide identifying infor-
mation about the underlying production function. The contrast between panels (a) and
(b) further indicates that only a subset of plots (imperfectly proxied by their “active”
status) may be suitable for groundwater development. We later term these suitable plots
“developable” and treat this unobserved type (D) as a latent factor in our structural

estimation.

correspondingly, in the model only allow one borewell to be drilled each year). As support for this choice,
we note that, in the representative panel of plots, only 7 out of 11,448 (0.06%) year-to-year changes in
functioning well numbers are from zero to two (or more).



Adjacency survey We define an adjacency as the set of all agricultural plots contiguous
to a reference plot, inclusive of it. As part of the 2017 household survey, an adjacency
survey was administered covering 1,057 farmers with an eligible reference plot. Eligibility
required that at least one drilling attempt had been made in the last seven years either
on the plot itself or within a 500 meters radius of the plot. (If the household had two or
more eligible plots, one was chosen at random). The adjacency survey asks each reference
plot owner for retrospective information annually, going back to 2011, about the existence
and status (functioning or not) of all borewells in the adjacency. Following our timing
conventions, we match drilling activity and borewell failure on reference plot 7 in year
t with the number of functioning wells on the reference plot, n;;, and with the number
of functioning wells in the adjacency outside of reference plot, N;;, both observed at the
beginning of year t, i.e., before any year ¢ failures. (We drop data from 2011 because we
do not have N;; for that year).

Throughout the paper, we denote the total number of functioning wells in the adja-
cency by Ny, where Nj; = N, + ny. Since adjacency survey respondents may recall the
functioning status of borewells on other farmers’ plots less accurately than of those on
their own (reference) plots, our econometric work based on adjacency survey data allows
for Nj; (but not n;) to be measured with error, i.e., misclassified as functioning when
actually failed or as failed when actually functioning.!® We assume perfect recall for all

other measurements in the adjacency and household surveys.

3 A Model of Borewell Investment

In this section, we present a dynamic equilibrium model of borewell investment on a large
plot network. Based on evidence adduced in Appendix C, we abstract from liquidity

constraints and other financial frictions.!!

08pecifically, our estimates of the well failure process (Section 4.3 and Appendix F) and the model
validation exercise (Section 4.5 and Appendix H) rely on adjacency survey data. To deal with misclassi-
fication in N;;, we use the number of eristing wells in year ¢ as an upper bound for the unobserved true
number of functional wells in the borewell failure model, or as an instrument for the reported number of
functional wells in the model validation exercise. We argue that existing wells, i.e., those that were ever
functional, are reported accurately, even if their functional status and the exact timing of failure events,
is subject to recall error.

HTn particular, we find no link between the pre-sample wealth of the plot owner and their propensity
to drill from 2012-16, and we show descriptive evidence of farmers’ access to credit.



3.1 Preliminaries

Let the incremental output from groundwater irrigated agriculture on plot ¢ at time ¢ be

8

v =0 |ad_a)’ +(1—a)a]| (1)

where (6, «, ) are parameters, a; is plot area, and ¢ is discharge or flow from well w.
Yearly flow is stochastic and thus unknown to the farmer prior to drilling and has a
discrete distribution with K points of support {¢¥,, ..., ¢} each with probability ;.
Along with constant elasticity of substitution (CES), the production function defined in
(1) imposes constant returns to scale (CRS); i.e., output per acre depends only on flow
per acre.'? The scale parameter § converts physical output into 2017 Indian rupees (Rs).

We assume that only functioning borewells within plot ¢’s adjacency influence flow and
failure of borewells on that plot; borewells outside of the adjacency cause no interference.
This is a reasonable assumption given the typical size of plots and range of well interference
effects in our setting.'® Year ¢ flow-state probabilities 7;;, thus depend on the number of
functioning borewells in the adjacency at the beginning of year t, as well as on that year’s

monsoon rainfall (i.e., aquifer recharge), according to
Ttk = '/Tk(Nita Rt)~ (2)

Due to increased well interference, higher N;; shifts probability mass to low flow states.
A borewell remains functional, with positive discharge, until stochastic failure occurs
at rabi planting with probability 7py; = mp(Ny—1, R), which again incorporates the lo-
calized externality. We assume that failure is an absorbing state, so that once a borewell
fails it ceases to discharge water for good. Put differently, there is no possibility of ‘re-

suscitation’. 1415

12The Online Appendix of Giné and Jacoby (2020) tests and cannot reject CRS based on a Cobb-
Douglas production function estimation in a closely related setting.

13Tn a chessboard configuration of identical plots averaging one hectare (as in our data) with borewells
located at the center, the distance between a borewell in the reference plot and one elsewhere in the
adjacency would be 100-140 meters, well within the range of interference effects in Chandrakanth (2015).
Expanding the definition of adjacency to include a second ring of identical plots would increase the
average distance between wells to 200-280 meters, beyond the range of significant interference effects.

14This is a simplification for the sake of empirical tractability; resuscitation does occur, albeit infre-
quently. Examining failure histories of the 429 borewells in our survey reported to have first failed in the
decade between 2005-2014, 48 (or 11%) began to function again up to 3 years later, although 3 of these
wells had failed again by 2017. We code wells that resuscitate within 2 years of first failure (most cases)
as always functional and wells that resuscitate only after 3 years as failed in the first year of failure.

15While we allow the failure probability to depend on rainfall for the sake of generality, we find a null

10



We further assume that the probability of a successful drilling attempt, 7g, is constant.
Each attempt to drill a borehole costs ¢, and, if successful, entails an additional cost of
installing a pipe, casing, and hooking up the electrical connection; the submersible pump
itself is removable and thus we do not consider it a sunk cost. The total cost of a successful
attempt is, therefore, ¢, > ¢q4.

Finally, for the sake of tractability, we assume that at most two wells can function
simultaneously on any given plot so that Ny € {0,..,2p;}, where p; is the number of
plots in adjacency .'® Drilling success, failure, and discharge events for two wells on the
same plot are independent random variables conditional on the plot-specific unobserved
heterogeneity (described in Section 4). As in equation (1), the incremental output of a
plot with two borewells depends on the sum of their discharges ¢}, + ¢2, since water from
both wells can be pooled and dispersed throughout the plot. Expected output conditional
on, respectively, the number of functioning borewells in the adjacency, the number in the

farmer’s own plot, and on monsoon rainfall, Y;;( Ny, ng, Ry), is thus

K
1
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(3)

3.2 Borewell investment decision

We now consider the discrete choice to drill (d = 1) or not to drill (d = 0) and derive
the plot owner’s decision rule or conditional choice probability CCP(N,n) = Pr(d =
1 | N,n), temporarily dropping subscripts for ease of exposition. We first describe the
dynamic decision facing the owner of a plot with area a in an adjacency with p plots,
in isolation, i.e., taking as given their beliefs about the evolution of the state of the
adjacency. As noted, the state space of the plot owner consists only of the total number
of wells in the other plots of the adjacency N € {0,..,2(p — 1)} and the number of own
functioning wells, n € {0, 1,2}. In the next subsection and later in Section 4.1, we discuss
this assumption and its role in a tractable equilibrium model of beliefs and conditional
choice probabilities.

By assumption, state n = 0 or n = 1 are the only cases where investment can occur. A

effect of rainfall in Section 4.3, consistent with our assumption of well failure being an absorbing state.
16In our representative plot panel, 3 or more functioning wells occurs in just 35 out of all 14,310
plot-years.
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plot owner with n = 0 may decide not to drill, with payoff value Tpo(N') + €gg, or to drill,
with payoff value To;(N) + €g7. As in a random-utility framework, choice-specific payoffs
have additive “deterministic” and “random” components. The random components of the
payoff of waiting (eqg) or drilling (&o;) are realized every period before choices are made,
iid across choices and time, and unobserved by other plot owners in the adjacency, each
of whom are drawing their own random components.

The deterministic components, which are known to the plot owner conditional on the
observable state variables and parameters, include the static one-period profits (expected
value of output minus drilling costs, if any) and the expected continuation values. For

the no drilling (waiting) choice,

Too(N) = BEV(N',0)
= 8 FW' | N, O)V(A7,0) (4)
N/

and for the choice of making a drilling attempt
Tor (V) = s (—cs FOYEW N0V, 1>>
N/
+ (1 _ﬂ-S) <_Cd+ﬁzF<Nl |N,O)V<Nl,0)) P
Nl

where the value function V (N, n) is defined below, j is the discount factor and F(N” |
N, n) reflects beliefs about the probability of N’ functioning wells in other adjacency
plots next period conditional on A functioning wells in other adjacency plots and on n
functioning wells on the reference plot (n = 0, in this case) this period. Since drilling
occurs after rabi season production (see Figure 2), the increase in expected output from
any successful attempt is only realized in the next period.

We assume that the random components associated with the choices of waiting and
drilling, (€go, €or), are each iid Type-1 extreme value with location parameter 0 and scale
parameter o. Further, denote by V(N,n) the beginning-of-period value function for the
plot owner, before these random components of payoffs are realized. Taking expectations

for n = 0, we have

V(N,0) = Emax {@00(/\/) + €00, Tor (N) + 601} (6)
= 0(7 + log (exp(voo(N) /o) + exp(@of(/\/)/a))>
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where the second line follows from the Type-1 extreme value assumption and ~ is Euler’s
constant.
A borewell owner with n = 1 may decide to wait or attempt a second borewell. Waiting

yields payoff value v19(N) + €19, where

T10(N) =Y (N + 1,1, R) + BE [(1 — N+ LR)) S EW | N, DV, 1)
Nl

7
+7pN+1,R)Y PN |N,1)V(N’,0)], v
v

with expectations taken with respect to the distribution of next period’s monsoon, R’.
Equation (7) reflects the timeline in Figure 2, with current year drilling decisions made
before the farmer knows about failures of currently functioning borewells; these will only
be realized after the upcoming monsoon and once next year’s rabi planting starts. At-

tempting a second borewell yields payoff value T1;(N') + €17, where

UH(N) = Y(N+ 1, 1,R) — CgTTg — Cd(l — 7T5)
+BE [wsu — W+ LR) Y PN | N, DV(N,2)
N/

(msmrN + L R) + (1= ms)(1— mo(N + L, R)) S FWV [N, vty O
Nl

+ (1 —me)me (N + 1L, R) Y FIW' | N, V(N 0)]
Nl

We can now write

V(N,l) = [Emax {@10(./\/’)4‘610,@1[(/\/‘)4—611} (9)
= o(v+ log (exp(v10(N) /o) + exp(v1;(N) /7)) )

where the second line follows, again, from the Type-1 extreme value assumption. Finally,
a farmer with two functioning borewells on a plot cannot invest in a new one and, as a

result, we have
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V(N,2) = Y(N +2,2,R) + BE [(1 — N+ 2, R))2 S FW [N, 2V (N, 2)
&

+2mp(N + 2, R) (1= mp(N +2,R)) Y FWN | N, 2)V(N', 1) (10)
N/

+ TN 42, R) Y PN | N 2)V (N 0)] .
Nl

Equations (4)-(10) combine to form the Bellman equation for this investment problem.

The discrete choice to attempt drilling a borewell in the reference plot is thus

1 if n <2 and U,;(N) —Tpo(N) > €0 — €ns

0 otherwise,

dzd(./\/,n)z{

using equations (4), (5), (7) and (8). With logit random utility shocks, the decision rule
as perceived by the researcher (and by neighbors) is characterized by the CCP function

CCP(WN,n) = Pr(d=1|N,n)="Pr(en — €1 < Tpni(N) — Upo(N))
exp(Vnr (N)/0)
exp(Tns(N) /o) + exp(Tpo(N) /o)

3.3 Adjacency equilibrium

Before characterizing the equilibrium of the dynamic drilling game, we introduce the
concept of a village “map”, or plot network, upon which this game is played. Although
the borders of our administrative maps (see Section 2.2 and Appendix B) do not generally
correspond to salient geographic or geological features, each map contains many plots and
as a result “truncation-at-border” effects should have negligible empirical consequences.!”
Formally, a cadastral map with P plots is characterized by a P x 1 vector A listing the
area of each plot and a P x P adjacency matrix M with typical element M;; = 1 if
plot j adjoins plot ¢ and 0 otherwise, and with M;; = 1. Ignoring for now plot-specific
heterogeneity, {A, M} fully characterizes all adjacencies in the map. For instance, plot i

has an area equal to the i-th element of A and its adjacency has > i M;; plots because plot

17 Absent natural spatial “breaks” in well interference externalities, a tractable empirical model requires
a bounded plot network, which necessarily generates truncated adjacencies; plots at the map-village
border have at least one adjacent plot that lies in a different cadastral map (unavailable to us). Truncation
induces an error in computing the adjacency equilibrium (discussed below) because, strictly speaking,
the true equilibrium is determined by interference effects from plots outside the cadastral map, which we
ignore. Arguably, however, this error is small because our average cadastral map has 881 plots with only
102 (12%) being border plots.
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J with M;; = 1 belongs in plot 7’s adjacency. Let M ;) be the set of plots h-level adjacent
to plot i so that My = {j : M;; = 1} is the set of immediate (1-level) neighbors in i’s
adjacency, M) = {j : j & M), 3k : j € My, k € My} is the set of 1-level adjacent
neighbors of ¢’s 1-level adjacent neighbors, and so on for all “layers” h.

Let the state of plot ¢ in period ¢ be the number of functioning wells on the plot at the
beginning of the year n,; € {0,1,2}. Further, let X; = {ny; :i=1,..., P} be the state
of the map, representing the entire spatial distribution of borewells in the cadastral map.
Now, define X ), = {njt 1] € ./\/l(l-h)}, where X(;1), collects the state of the neighbors of
reference plot i, X(;9), collects the state of the neighbors’ neighbors, and so on.

Thus far, we have taken beliefs about the evolution of the number of functioning wells
in the adjacency as given, viewing the plot owner’s investment decision as a game “against
nature”. Consider now a Markov-perfect equilibrium (MPE), in which beliefs and decision
rules (CCPs) of all plot owners are consistent with one another. Our state space (N, n)
implicitly assumes that plot owners ignore the status of wells on successive layers of plots
outside their own adjacencies. This restriction is not, in general, implied by our key
assumption that well interference is limited to functioning wells in the adjacency. Indeed,
information on the status of wells in the second layer might help agents predict immediate
neighbors’ investment behavior and thus the status of wells in the adjacency, information
about the third layer might help predict the status of wells in the second layer, and so on.
Under unrestricted MPE play, therefore, investment decisions may depend on the state
of the whole map, even with well interference effects confined to adjacent plots.

To be precise, let CCP;(X;) be a choice probability function for the owner of plot i
and {C'CP} be the vector of choice probabilities of all plot owners in the cadastral map.
Further, let one-period ahead transition probabilities F (Xi41 | Xi) describe beliefs about
the evolution of the state of the map and F(X;1 | X¢; {CCP}) be the one-period-ahead
law of motion for the state induced by the primitives and {CCP}. We thus have:

Definition 1. An MPE is a vector of choice probabilities {CCPf(X;) :i=1,..., P}
and beliefs F* such that: a) given F*, CCP; is the solution of plot owner ¢’s dynamic
game “against nature”; and b) beliefs are correct, in that F (X | Xp) = F( X |
X {CoPry).

In general, each plot owner in their unique adjacency would have a different equilibrium
CCP depending on all primitives, including the structure of the map. Given the number
of plots in the map, unrestricted MPE play is empirically infeasible due to the high
dimensionality of {X;, {CCP}}.

As a tractable alternative, we consider a Markov equilibrium in which: i) CCPs depend
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only on the state of the (1-level) adjacency (X(1),nit), and ii) the plot owner has beliefs
only about the stochastic evolution of X(;), in steady state. While assumption i) avoids
the “curse of dimensionality”, the fact that well interference is limited to the adjacency
should dampen the influences induced by unrestricted play of plot owners in layers h > 1
as well as make it less plausible (i.e., by bounded rationality) that plot owners would keep
track of the full state of a large map. Assumption ii), specifically that plot owners only
have beliefs about the state of their own adjacency, is a natural implication of assumption
i) but it also adds the non-trivial simplification that equilibrium beliefs are correct when
averaged over the map’s stochastic steady state. Thus, in the spirit of an “oblivious

equilibrium”,*®® we propose

Definition 2. An Adjacency Equilibrium (AE) is a vector of choice probabilities { CC P (X i1y, nit) :

i=1,...,P} and of beliefs {Fi*(X(ﬂ)tH | Xy nae) ci=1,..., P} such that: a) given
beliefs f’i*, CCP; is the solution of plot owner i’s dynamic game “against nature”; and
b) beliefs are correct “on average” in steady state. That is, let F'*°(Xy; {CCP}) be the
stationary joint distribution over the state induced by the primitives and the vector of
CCPs,” and let F;(X (1)1 | Z(nye Zaz)e; {CCPY) be the one-period-ahead law of motion
for z;1 induced by the same. Further, let F;°(X a2y | X1y, na; {CCP}) be the conditional

distribution implied by F*>*(X;; {CCP}). Then,

E* (Xanes1 = Tt | Xane = Ty na) = (11)
Z FX (x| @@y i {COPY ) E(Tanye | Tanye, Ty i {CCOPY).
T(i2)t

To understand how equation (11) constrains beliefs, note first that the evolution of
the state of plot j € M) between ¢ and ¢ + 1 depends on CCP; at ¢. This investment
decision rule depends, in turn, upon the state of j’s adjacency at ¢, formed by plot 7 and
all of its neighbors, including plot 7. All of the plots in j’s adjacency are in M) and

M ia). Therefore, the state variables of plot owner j are contained in {n;, X1y, X2}

BWeintraub et al. (2008), Benkard et al. (2015) and Ifrach and Weintraub (2017) consider alterna-
tive “oblivious equilibrium” concepts in the context of the Ericson and Pakes (1995) model of industry
dynamics and show that they closely approximate the corresponding MPE. While we expect similar
approximation results to hold in our setting, we leave this issue for future research.

9Sears et al. (2022b) apply a moment-based Markov equilibrium approach along the lines of Ifrach
and Weintraub (2017) to estimate a model of groundwater extraction in California. Hodgson (2024),
building on the work of Fershtman and Pakes (2012) on games of asymmetric information, also uses a
reduced-state equilibrium concept to obtain a tractable empirical model of informational externalities in
the context of strategic oil field exploration.

20Gince the state of the map is an irreducible and aperiodic Markov chain, a unique stationary distri-
bution exists.
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If the owner of plot 7 knew X(9);, they would thus be able to predict their neighbor j’s
behavior at ¢ using CCP; and, together with other primitives such as the drilling success
and well failure processes, predict the stochastic evolution of the state of plot 7 which
is the second factor in each term of the summation in equation (11). An AE, however,
assumes that X ;) is not in plot owner 4’s information set but that they form expectations
about it using the (conditional) steady state distribution F>(X o | Xy, nie; {CCP})
as probability weights on the RHS of equation (11).2! Although each plot owner still has
a unique CCP and set of beliefs, and the plot owners’ joint decisions still depend on the

entire cadastral map, the AE concept achieves considerable simplification.??

4 Structural Estimation

We now describe a tractable empirical structural model and a Simulated Method of Mo-
ments (SMM) procedure to estimate it. In addition to the four structural parameters

Q= (0,a,0,0), Table 1 summarizes the model primitives and how they are estimated.

4.1 Empirical specification

Unobserved heterogeneity We allow for two latent plot-specific factors. The first
concerns the presence/absence of water-bearing fissures in the hard-rock underlying the
plot, the distribution of which we approximate as Bernoulli. In other words, plots are
either “developable” (D = 1), in which case the model of optimal annual drilling choice
outlined in Section 3 applies, or not (D = 0), in which case our model is irrelevant for
that plot and there is never drilling on it. To pin down the fraction of developable plots
Pr(D = 1), we exploit the fraction of “active” plots (see Section 2.2) observed in our
sample as discussed below. The second latent factor applies only to developable plots and
concerns heterogeneity in groundwater availability. Section 4.3 discusses estimation of
the discrete distribution of this latent factor using well flow and failure data. We assume

that farmers know the latent types of their own plot, but not those of the other plots in

2Tn our empirical implementation, we do not use equation (11) directly but rather compute equilibrium
beliefs using “brute force” by simulating very long histories of investment, success, and failure events for
every plot in each cadastral map until a steady state is reached. We then use simulated histories to
compute the requisite transition probabilities.

22Using Brouwer’s fixed point theorem, we can show that at least one AE exists. Multiplicity of
equilibria, however, cannot be ruled out. Xu (2018) establishes that, in a static version of a similar
model, the best response operator has a contraction property provided that the “strategic interaction
parameter” is small enough. An extension of this result to a dynamic setting is nontrivial and is left as
a topic for future research.
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Table 1: ESTIMATION ROADMAP

Symbol(s) Section/Table note
Estimated in 2nd stage:
Production function 0,a,0 4.4, 4.5
Scale of drilling shock o 4.4, 4.5
Fraction of developable plots Pr(D=1) 4.1, 4.4, 4.5
Estimated in 1st stage:
Flow state probability functions 1y, ..., 75 4.3/note 1
Failure probability function TR 4.3 /note 1
Flow/fail heterogeneity high/low 4.3 /note 2
Other primitives:
Unsuccessful drilling cost Cd note 3
Successful drilling cost Cs note 4
Pr(Good monsoon) E R, note 5
Pr(Success|D = 1) TS 2.2/note 6
Discount factor 16 4.1
Plot network (by map-village) {A, M} 2.2 /note 7

Notes: (1) See also Appendix F for estimation details. Probability functions depend on
number of functioning borewells in adjacency and vary by mandal, monsoon rainfall and
unobserved type; (2) Probability of low flow type = 0.346, high flow type = 0.654; (3)
¢q = 28,800 Rs is median drilling cost (in 2017 Rs) across all borewells sunk since 2000;
(4) ¢s = 59,800 Rs is median of sum of drilling, pipe, casing, and electrical connection
costs (in 2017 Rs) across all borewells sunk since 2000; (5) Good monsoon defined as
June-November rainfall in mandal above study area average (See Appendix Figure F.1);
(6) Observed drilling success per attempt = 0.375.; (7) At least one cadastral map per
mandal (two mandals have two maps each; see Appendix B).

their adjacency. Furthermore, we assume that latent developable type and flow/failure

type are independent of each other and that each is i.i.d. across plots.?

State space restrictions and observed types We assume that CCPs depend on
reference plot area a and on the number, but not on the areas, of adjacent plots. This

restriction effectively reduces Xy, to Ny => njt, yielding state-space (Nit, ni).

JEM i1yt
Given the one-to-one mapping between plots, CCP functions and beliefs, and the very

large number of plots in each village map, we do not allow for one CCP function specific to

23These i.i.d. assumptions rule out spatial clustering of drilling in areas more suitable for groundwater
development. While positive spatial correlation in developable and flow/failure type is plausible, incor-
porating it is unlikely to appreciably improve the fit of the structural model. Given this, along with the
limited information about spatial correlation in our data, as well as the additional complexity involved,
we leave this refinement for future work.
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every plot. Instead, for tractability we group similar plots into categories or types. Thus,
there are (only) as many different CCPs as the number L of such types. Discretization of
reference plot area into quintiles coupled with the number of adjacent plots in the maps
ranging from 1 to 7, yields 35 possible observed types, which, along with 2 unobserved
flow/fail types mentioned above, implies L = 70 for each of the 14 map villages, for a

total of 980 distinct C'C'P(N;, n;;) functions in our empirical implementation.

Discount factor Given the challenge of identifying the discount factor in dynamic dis-
crete choice models (Rust 1994; Magnac and Thesmar 2002), we follow standard practice
and fix # in the SMM estimation. However, since our welfare calculations may be sensitive
to this choice, instead of selecting a value of [ from the literature, we calibrate it using
data on land values. To do so, we first estimate the structural model at different (fixed)
values of § along a coarse grid. Next, we simulate from each of these estimated models in
steady state the average difference of the present discounted value per acre of active plots
versus inactive plots. Lastly, we compare this value differential to its empirical counter-
part, which we estimate to be around 80,000 Rs/acre (see Appendix D for details), and
select the § that yields the closest match. This procedure delivers a value of 5 = 0.95.

4.2 Solution algorithm

Given values of Q, Pr(D = 1) and all the other primitives, we obtain an AE for each of

the 14 cadastral maps (2,862 plots in total) as follows:

Initialize the maps:

Step 1 Draw a D; for each plot j from the Bernoulli distribution with Pr(D = 1).

Step 2 Assign each plot with D; = 1 an unobserved flow type vy or v,, drawing
from a Bernoulli distribution with probability of (low) type 1 = 0.346.%*

Step 3 Assign each plot an initial number (zero) of functioning borewells {n;o : j =1, ...

and an initial choice probability function (constant equal to 0.5) to each type
{CCPLO = 1,,L}

Iterate on beliefs and CCPs:

24To ensure a unique AE despite the inherent randomness of a particular map draw in Steps 1 and 2,
we repeat these two steps ten times for each plot type and pool the resulting data in computing beliefs
in Steps 4 and 5.
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Step 4 Given {CCP,,,:1=1,...,L} at iteration ¢ = 1,2, ..., simulate the time-
series of well drilling decisions, successes and (unobserved type-specific) failures
in every plot on the map until the steady state is reached. Simulate T =

150, 000 periods forward in steady state.

Step 5 From the steady state simulations, construct estimates of the one-period
ahead state transition matrices F(N'|N,n) for each type, averaging across

plots on the map of the same type. Denote these estimates by Eq.

Step 6 Given beliefs ]*A}q and primitives, use value function iteration to compute
new CCP’s which solve the plot owner’s game “against nature”. Upon conver-
gence of value function iteration, obtain a {CCP),} satisfying the fixed point
condition Vi, = ¥(V,, Eq, Q) where V} is the ex-ante integrated value function
and W is a value function iteration operator corresponding to the right-hand

side of Bellman equations (4)-(10) for all types.
Convergence:

Step 7 If |CCP, — CCP,_, || is small enough, then stop. If not, then update ¢
and return to Step 4. If CCPs converge, so do beliefs, which are a continuous
function of CCPs.

Steps 1-7 are nested within a routine for minimizing the SMM criterion function with

respect to 2 and Pr(D = 1) using a downhill simplex method.

4.3 First-stage: Estimating well interference effects

Appendix F lays out the panel data, econometric procedures, and results for our joint es-
timation of the well flow and failure processes incorporating interference from neighboring
borewells. We use the 2017 adjacency survey to construct a 2012-16 panel of borewells
at risk of failure and we combine the 2010 and 2017 household surveys into a two-year
borewell flow panel. We allow for the endogeneity of neighboring borewells by letting their
number be correlated with plot-specific unobserved heterogeneity in groundwater avail-
ability, our second latent factor. In other words, we exploit our panel data to estimate
a correlated random effects model capturing how the number of functioning neighboring
wells impact own well flow and failure net of common location-specific unobservables. In
the case of failure, for example, our estimated interference effects can thus be interpreted
as follows: Following a failure (or successful drilling attempt) shock to a neighbor’s plot

in period ¢t — 1, there will be one less (more) surrounding well in period t, which lowers
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(raises) the probability that the own well fails in period ¢. This approach also allows us
to recover predicted probability functions used in the second-stage estimation.

As mentioned in Section 2.2, because adjacency survey respondents may recall the
functioning status of borewells belonging to their neighbors less accurately than of those on
their own (reference) plots, our first-stage estimation procedure corrects misclassification

error in the reported number of functioning wells on adjacent plots N, in the failure

25 E
L. il

component of the flow-failure mode We use the reported number of existing
(functioning plus failed) wells, which is plausibly observed accurately, essentially as an
instrument for the reported number of functioning wells. That is, we assume that the
number of existing wells in the adjacency is associated with own-well failure only insofar
as it proxies for the number of functioning wells in the adjacency, or, more formally,
that own-well failure and NF are orthogonal conditional on N; and the random effect
capturing the flow/fail type of the own-well.

In addition to conditioning the flow state and failure probabilities on the (endoge-
nous) number of neighboring borewells, we also control for (exogenous) rainfall, mandal
dummies, and plot area because well interference is less likely to affect larger plots ce-
teris paribus, as seen in Appendix Table F.4. We obtain adequate model fit with two
unobserved plot types, low flow (high failure) with probability 0.346 and high flow (low
failure) with probability 0.654. Figure 4 shows expected well flow >, mrq; (left panel),
measured as a fraction of the outlet pipe’s capacity and thus bounded above by 1, and
the probability of well failure 7z (right panel) against number of functioning wells N,
averaging across mandals and plot area quintiles for ease of presentation. While expected
flow differs modestly between high and low unobserved flow types, the marginal effect of
N on expected flow (the intensive margin externality) is virtually identical across types,
whereas both the rate of well failure and the marginal effect of N on failure (extensive
margin externality) are much higher for the low flow than high flow type. By contrast, an
above average (“good”) monsoon substantially increases well flow but has a statistically

insignificant effect on failure.

25The flow component of the model uses a slightly different measure of Nj;, which is available only in the
2010 and 2017 household surveys. Because this measure is contemporaneous rather than retrospective,
we assume no reporting error (see Appendix F for more detail).
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Figure 4: EXPECTED FLOW AND FAILURE PROBABILITIES

Expected well flow
Prob(well failure)
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Notes: Left panel: Expected well flow (3, mxqr < 1) as a function of N, the number of adjacent
functioning wells, by latent flow type and monsoon state. Right panel: Annual probability of
well failure as a function of N by latent flow type and monsoon state. Probability functions
are predictions from the joint well flow/failure estimation averaged over the 12 mandals and 5
area quintiles.

4.4 Second-stage: Moment conditions and identification

We match the observed annual drilling rates in the representative sample of plots by
area quintile a; and number of functioning borewells to their model-based counterparts.2®
Since no investment occurs once a plot has two borewells by assumption, we do not match
drilling rates conditional on n > 2. Although we do not target moments involving the
number of functioning borewells outside of the reference plot (i.e., average drilling rates
conditional on different values of A), we later exploit the partial correlation between
drilling and NV to validate the model. This correlation is not needed in our second-stage
because we estimate all parameters associated with well interference externalities in the
first-stage, as previously discussed.

Identification of the structural parameters may be thought of, heuristically, in terms

26Model-based drilling rates are averages across the 14 map villages weighted by the proportion of total
plot area in the representative plot sample contributed by sample plots associated with that village.
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of a static model wherein drilling decisions are made once and for all, without borewell
failure, and with the number of functioning borewells on a reference plot taken as given.
In this case (ignoring unobserved heterogeneity),?” we have P, = Pr(d = 1|n,a;) =
logit ' ({0[f(n+ 1, ax; ¢, 0) — f(n, ax; a,0)] —Ec} /o), where Ec = c,my + cq(1 — ) is the
expected cost of drilling and f = %]E[y(N , R, n,ar; a,9)] is expected (physical) output on
a plot of area a;, with n functional borewells, where expectations are taken with respect
to flow outcomes, beliefs about the number of functioning borewells in other adjacency
plots, and rainfall.

Given « and 0, the difference in drilling rates across any two (n, k) pairs with different
expected physical outputs identifies the ratio 8/0.2® Since E ¢ is a known constant, we can
then back out o, and hence 6, from the average drilling rate at any (n, k). Given 0(«, )
and o(a,0), the remaining eight moment conditions yield more than enough equations

to solve for a0 and d. Intuitively, fixing a, differences in drilling rates at n = 1 and
Prp(1-Pok) _
Pox(1=Prg)

g((zfs)){[f(Q, ag; o, 0)— f(1,ax; o, 0)]—[f(1, ag; a, §) — 0] }. Likewise, now fixing n, differences
in drilling rates across area quintiles capture how the marginal product of flow varies with
area because log len:,((lli%k,ii = 3((3’?){[]“(714—1, ag; a, 0)— f(n,ar; o, 0)]—[f(n+1, ap; o, 6) —
f(na ag; &, 5)]}

Finally, to identify the fraction of latent developable plots Pr(D = 1), we simulate the

n = 0 capture diminishing returns to flow because, in log odds form, log

active status of a plot of each observed type using criteria analogous to those deployed
in the actual data (Section 2.2); that is, we construct synthetic 5-year panels in steady
state and assign an active status indicator A equal to one if any drilling attempt occurs
over the panel or if there is a functioning borewell in the initial period. Averaging over
plots of the same area type and over 5 simulated panels per type yields the model-based
moments Pr(A = 1|a;) that we match to those from the representative plot sample.

In all, we have 15 moment conditions and the SMM criterion function uses a diago-
nal weighting matrix consisting of the inverse of these moment variances. A small-scale
Monte Carlo experiment reported in Appendix E indicates that our second-stage struc-
tural estimation algorithm performs exceedingly well in practice, recovering all of the true

parameters with very small biases.

2TWhile we incorporate unobserved (flow/fail) heterogeneity in the empirical model without the need
to estimate the parameters of its distribution in the second-stage (see Table 1), abstracting from this
heterogeneity delivers the simple intuitive mapping from drilling moments to structural parameters.

ZFor instance, using differences in log odds ratios, we obtain /0 = log %[ﬂl,ak;a,é) —

f(l, ag’; o, 5)}_1.
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4.5 Results and model validation

Table 2 reports the second-stage estimates along with their standard errors based on a
100 replication bootstrap.?? We strongly reject a Cobb-Douglas production function (i.e.,
d = 0) in favor of a CES. Figures 5 and 6 show that our model matches the 15 targeted
moments reasonably well. As a goodness-of-fit test, consider the functioning borewell
density implied by the estimated model in steady state of 0.229 wells per developable acre
or 0.153 (= 0.229 x 0.67) wells per acre of land overall. This latter figure is quite close to

the 2012-16 average of 0.160 borewells per acre in our representative plot sample.°

Table 2: STRUCTURAL PARAMETER ESTIMATES

0 a ) o Pr(D=1)
16.99 0.78 0.72 0.63 0.67
(0.28) (0.01) (0.04) (0.03) (0.02)

Notes: Bootstrapped standard errors in parentheses. See equation (1) for
definition of production function parameters (6, a, 0); o is scale of drilling shock.

By way of validation, we simulate data from the estimated model to compute the par-
tial correlation between d;; and N, and compare it to its data counterpart. This “reduced-
form” parameter captures the strength of strategic substitutability between neighbors’
drilling decisions. Starting at a steady state on each of 10 replications of the cadastral
village maps, we simulate five-year panels consisting of triplets {d;;, ny, Ny : t = 1,...,5}
for every plot on the map that is assigned developed status (see Step 2 in Subsection
5.3); this yields 61,695 5-year panels in total. On this large “sample”, we estimate a
linear probability drilling model with reference plot fixed effects using only observations
with n; < 2, i.e., the cases when drilling is theoretically possible. We run two different
versions of this regression, one conditioning on n;; and the other not. Since we can make
the sample arbitrary large, each regression yields a “population” value of the strategic
substitutability effect. In Table 3, we compare each model-derived population value with
its empirical counterpart estimated from the adjacency panel data (see Appendix Table
H.1) using a bootstrap hypothesis test suggested by Hansen (2022). Despite reasonably
tight percentile-¢ confidence intervals, for neither specification of strategic substitutability

can we reject the null hypothesis of equality between model and data.

29These standard errors are understated as they do not account for pre-estimated first-stage parameters.

30Following a referee’s suggestion , we also assess whether incorporating additional heterogeneity in
land productivity, specifically in 6, would better fit the observed correlation between plot values and the
number of functioning borewells. Our conclusion, reported in Appendix G, is that it would not; the
heterogeneity built into our model (more than) fully accounts for this external data moment.
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Figure 5: Annual drilling rates by plot area quintile and n
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Notes: Each pair of bars represents a data moment (annual drilling rate by plot area
quintile and number of functioning wells on the reference plot) and its corresponding
model fit.

Figure 6: Probability plot is active by area quintile
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Notes: Each pair of bars represents a data moment (probability of having at least one
functioning borewell or drilling attempt in a 5-year period by plot area quintile ) and its
corresponding model fit.
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Table 3: STRATEGIC INTERACTIONS — DATA VS. MODEL

Hy : Data = Model

Conditioning on n Data Model bootstrap p-value

No -0.0442 -0.0363 0.691
[-0.007,-0.0882]

Yes -0.0381 -0.0340 0.845

[-0.0008,-0.0801]

Notes: Percentile-t bootstrap confidence intervals in square brackets. Row 1 specifi-
cation regresses d;; on Nz (cf. column 5 of Appendix Table H.1 ); row 2 specification
regresses d;; on N;; and a dummy for ny = 1. (cf. column 6 of Appendix Table H.1).
All regressions include plot fixed effects.
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5 Counterfactuals

Our quantitative policy evaluation addresses four questions: (1) What is the social cost of
the current policy of free (but rationed) electricity to farmers for pumping groundwater?
(2) What is the optimal tax on borewells that eliminates the deadweight loss of electricity
subsidies and of the well interference externality? (3) How would the burden of borewell
taxation be distributed across landowners? (4) How much do local externalities magnify

the inefficiency of electricity subsidies and distort the spatial allocation of drilling?

5.1 Social cost of electricity subsidies and optimal tax

We estimate the private value of developable land, or private welfare for short, to be
54,700 Rs/acre.?"32 Social welfare is private welfare net of the cost of electricity, which,
though given free to borewell owners, is not free to society. The steady-state fiscal cost of
the electricity subsidy in present value terms is 38,900 Rs/acre = 0.229 borewells per acre
x 8,500/0.05, where the second term is the annual cost of electricity to run a pump given
daily power rationing (Appendix A) divided by the annual discount rate. Thus, social
welfare is only 15,800 Rs/acre; more than two-thirds of private welfare is accounted for
by the capitalized value of the electricity subsidy.

Consider next an annual tax 7 on functioning borewells, which could be implemented
in practice as a flat charge for maintaining an agricultural electrical connection. Setting
7 equal to the annual cost of electricity (i.e., 7. =8,500 Rs/year) would fully recover costs
from agricultural consumers. A flat charge exceeding 7. would act, at the margin, like a

Pigouvian tax on borewells.?

31This is the average expected discounted present value of agricultural output minus drilling costs in
steady state across all maps weighted by the proportion of total acreage from the map village repre-
sented in the sample (note that we do not include the extreme-value random shocks in our valuations).
Undevelopable land has zero private value by assumption (our normalization). To be clear, private wel-
fare accounts for externalities inasmuch as it averages values across hundreds of adjacent plots with
(potentially) mutually interfering borewells.

32The value of developable land (i.e., over and above the value of undevelopable land) is much lower
than the value of active land, which we estimated at 80,000 Rs/acre, because the proportion of developable
plots (0.67) is much higher than that of active plots (0.39).

33In terms of the model, the annual net value of output in Rs under a counterfactual tax 7 > 0 becomes
Ey — ™. Once a borewell fails, its owner incurs no further tax on it. We further assume that extant
borewells that become unprofitable under a new tax are dismantled, i.e., their pipe and casing removed, at
zero cost. Although our structural model does not explicitly incorporate dismantling (which would never
be chosen anyway), our counterfactuals still treat this decision as the outcome of a strategic equilibrium
(Appendix I). In particular, we assume that once a tax is implemented, borewell owners adopt beliefs
(one-period ahead state transition probabilities) consistent with the transition to the new steady state
under the counterfactual policy (see below). Thus, in making their dismantling decision, each borewell
owner takes into account the dismantling done by other borewell owners in their own adjacency.
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For each counterfactual 7, we compute social welfare along the entire transition path
from the zero-tax baseline to the new steady state AE. A key assumption is that each plot
owner at each date of the transition has correct beliefs about the evolution of the state
of their adjacency when averaged over their respective village map’s stochastic transition
paths (see Appendix I for details of the equilibrium concept and solution algorithm).
Although this rationality assumption is stronger than the one invoked to compute the
steady state AE, calculating social welfare along the transition path is preferable to simply
comparing long-run steady states as it accounts for the short-run benefits and costs that
accrue to current landowners as they transition from their initial stock of wells without a
tax to the steady state with a tax. As Domeij and Heathcote (2004) argues in a related

context, ignoring the transition path in welfare calculations can be misleading for policy.

Figure 7: Welfare, borewell density, and output under alternative taxes
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Notes: In the left panel, each point on the solid (dashed) curve represents the social (private) per
acre value of developable land, or welfare, along the transition path from the benchmark zero-tax
economy to the long-run steady-state under alternative values of 7: 7. = 8.5 is the tax that recovers
electricity costs; 7% = 10.5 is the optimal tax. In the right panel, each point on the curve represents,
respectively, borewells per acre and the present discounted value of agricultural output in the long-
run steady-state under alternative values of 7.

Figure 7 plots social and private welfare (left panel) and borewell density and the
present discounted value of agricultural output per acre (right panel) against the annual
borewell tax. Private welfare, borewell density, and output all decrease monotonically as
T increases, with output declining at a slower rate than density as drilling increasingly

concentrates on high flow/low failure plots. By contrast, social welfare is hump-shaped
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in 7 and intersects private welfare exactly at 7., the social cost of electricity.

Deadweight loss of electricity subsidies Arguing that usage-based pricing of agri-
cultural power is impractical in India, Shah et al. (2007) propose instead a flat-fee com-
bined with quantity rationing (the latter discussed by Ryan and Sudarshan 2022). Imple-
menting this policy in the form of an annual borewell tax 7 = 7, increases the social value
of groundwater development from 15,800 to 24,600 Rs/acre.?! This implies a deadweight
loss from free electricity provision of 8,800 Rs (around 135 USS$) per developable acre
in present value terms, or 23% of the fiscal cost of the subsidy. In other words, nearly
a quarter of every rupee transferred in-kind to farmers in the form of electricity is lost

through over-drilling.

Optimal borewell taxation To correct the negative externality, the social welfare
maximizing tax 7% should exceed the annual cost of electricity 7..3° In the left panel of
Figure 7, we find that social welfare (solid curve) is maximized at 7* = 10, 500 Rs, which is
about 24% higher than 7.. Nevertheless, there is little welfare difference between a tax of
8,500 Rs and one of 10,500 Rs, and only a small absolute difference in equilibrium borewell
density (right panel). Once electricity is provided to farmers at cost, and borewell density

declines by 52% from its baseline value as a result, the marginal externality cost is small.

5.2 Distributional implications of borewell taxation

Accounting for transitional dynamics, as we do in this paper, also allows us to understand
how the burden of borewell taxation is distributed across landowners, which can inform
the policy debate. At each counterfactual tax 7, Figure 8 shows private welfare by the
number of functioning borewells on the plot (n) before the introduction of the policy
(private welfare in the left panel of Figure 7 is a weighted average of these three conditional
curves). Note that taxing borewells, regardless of 7, has practically zero impact on plots
with no functioning borewells today because the option value of future drilling is minimal;

these developable plots are strongly selected to be of the low flow /high failure type.

34Incremental output would also decline by 37% in present value terms. While dry season production
contributes only a fraction of annual output (about a third in the case of paddy, the principal crop),
prices could potentially increase was cost-recovery implemented on a district or state-wide scale. India’s
high degree of spatial agricultural market integration (e.g., Ghosh, 2011), however, suggests that it is
reasonable to assume fixed crop prices in our counterfactuals.

350ptimality of a centralized Pigouvian tax presupposes that landowners cannot restrain socially unde-
sirable drilling through side-payments to neighbors. Aside from enforcement issues, one argument against
this Coaseian solution in our setting is the complex, multi-lateral, negotiations it would require across
the entire network of agricultural plots.
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Figure 8: Private welfare by initial number of functioning borewells
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Notes: Each point represents private welfare along the transition path from the bench-
mark zero-tax economy to the long-run steady-state under alternative values of 7 for
different values of n at the time the policy is introduced: 7, = 8.5 is the tax that recovers
electricity costs; 7° = 10.5 is the optimal tax.

Turn now to the cost-recovery tax 7.. Table 4 displays private welfare with 0, 1, and
2 functioning borewells at baseline and, respectively, under this counterfactual. As noted
above, the welfare loss for n = 0 plots is negligible, whereas owners of n = 1 plots lose
147,000 Rs and owners of n = 2 plots lose 237,000 Rs. There is considerable plot type
heterogeneity within each of the n = 0, 1, 2 groups, which is costly (if not impossible, in the
case of the two latent factors) for the policy-maker to observe. By contrast, n is observable
because a functioning borewell requires a working electrical connection. Our analysis thus
suggests the contours of a practical compensation scheme to mitigate political opposition
to electricity cost recovery. Farmers would receive 130,000 Rs per existing agricultural
connection upfront if they agree to pay 7. annually as long as their connection is active;
those who successfully drill and establish a connection ex-post would not be compensated.
The last column of Table 4 shows relatively small welfare losses or even gains under this
compensation formula. Furthermore, the ratio of compensation to fiscal cost of the subsidy
is only 0.765 (= 130/ (8.5/.05)), which means that the government would save about 23%
on its budget for electricity provision while leaving farmers largely whole (reflecting our
earlier finding that the deadweight loss from free electricity is 23% of the fiscal cost). A

compensation scheme based on n alone is surprisingly efficacious.
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5.3

To isolate the role of local externalities, we compute the village map equilibria in a coun-
terfactual “island” economy with zero well interference effects. For the sake of compara-
bility, we reduce the TFP parameter # in the island economy to deliver the same overall
borewell density (0.229 wells/acre) and, consequently, an identical fiscal cost of the elec-
tricity subsidy as in the baseline “network” economy. Because the profitability of drilling
is substantially reduced in the island economy to equalize borewell density, social welfare
falls to just 9,500 Rs/acre (compare columns 1 and 3 of Table 5). Removing electricity
subsidies in this counterfactual economy, however, increases social welfare by 4,700 Rs per
acre as compared to 8,800 Rs per acre in the network economy. We conclude that well

interference nearly doubles the deadweight loss arising from provision of free electricity

Table 4: COMPENSATION SCHEME FOR ELECTRICITY COST RECOVERY

Private welfare

Plot type Baseline Cost-recovery A Compensation Net welfare
n=20 5.7 1.4 -4.3 0 -4.3
n=1 263.1 116.3 -146.8 130.0 -16.8
n=2 468.1 231.4 -236.7 260.0 23.3

Notes: All figures are in thousands of Rs per plot.

Local externalities, deadweight loss and over-drilling

to borewell owners.

Table 5: ELECTRICITY COST RECOVERY COUNTERFACTUALS

Network economy Island economy

Baseline Cost-recovery Baseline Cost-recovery

Borewells density (wells/acre) 0.23 0.11 0.23 0.07
Fiscal cost of subsidy (000 Rs/acre) 38.9 0.0 38.9 0.0
Social welfare (000 Rs/acre) 15.8 24.6 9.5 14.2
Deadweight loss (’000 Rs/acre) 8.8 4.7
DWL/Fiscal cost of subsidy 0.23 0.12

The network /island economy comparison also illustrates the influence of local external-
ities on where drilling occurs.?® We simulate steady-states with and without externalities

on a single map-village (Ayyavaripalli; see Appendix J) so as to focus on plot-level het-

Notes: For the island economy, we set § = 11.15, versus 16.99 in the network economy, so as to obtain
equivalent borewell densities.

36We thank an anonymous referee for suggesting this line of inquiry.
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erogeneity, specifically, area and groundwater quality (flow/fail type). We again reduce 6
in the island economy so as to equate its borewell density to that of the network economy
(for this single map-village). At an average annual rate of 0.028, drilling is dramatically
lower in the island economy as compared to the rate of 0.127 in the network economy.
Figure 9 shows predicted plot-level differences in, respectively, number of borewells and
drilling rates between network and island economies by area quintile and flow/fail type.
Externalities ‘reallocate’ drilling activity and, consequently, functioning borewells from
large plots of low flow/high failure type to large plots of high flow/low failure type. This
reallocation is so pronounced that, despite the much higher drilling rate in the network
economy, there is less drilling and fewer borewells overall on large plots of low flow /high

failure type with externalities than without.

Figure 9: Allocation of Over-drilling
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Notes: Predictions from a plot-level regression of differences in number of wells (drilling rate)
between network and island economies on plot area quintile dummies, flow/fail type dummy, and
their interactions. Since the simulated data set can be made arbitrary large, no confidence intervals
are reported.

6 Conclusion

We set out to assess the social cost of a policy of free electricity to farmers for groundwa-
ter pumping in South India, a context with economically important yet highly localized
externalities. To do so, we developed a tractable dynamic strategic equilibrium model of

borewell investment across a large network of heterogeneous agricultural plots along with

32



a novel simulation-based estimation strategy, one potentially applicable to a wide range
of settings beyond that of concern in this paper.

Despite daily power rationing that obviates over-pumping (as per Ryan and Sudar-
shan 2022), once the extensive margin and drilling costs are taken into account, we find
that subsidizing electricity is a rather inefficient means of transferring resources to farm-
ers; almost a quarter of the transfer value is wasted through over-drilling of borewells, a
distortion greatly exacerbated by well interference. While the optimal Pigouvian tax on
borewells exceeds the annual cost of electricity by 24%, the marginal social gain from such
a tax beyond that required for cost-recovery is minimal, reflecting the extensive disman-
tling of unproductive borewells and choking-off of drilling that cost-recovery would entail.
Finally, although charging fully for electricity would have substantial short-run distribu-
tional implications, these could largely be ameliorated through a (practical) compensation
scheme.

A limitation of our methodology is that it relies on a steady state assumption; it
may, therefore, not carry over to settings in which water tables are undergoing significant
decline, as in much of northwest India. Adapting our approach to these circumstances

would be a fruitful area of future research.
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A Average annual electricity costs per borewell

The electricity cost of a borewell per year is the product of (1) power consumption of the
average pump of 6 horsepower (HP), which is 4.5 kWh (= 6 HPx0.746 kWh/HP), (2)
630 annual hours of pumping (average of unit record data for our 12 sample mandals from
India’s 4th Minor Irrigation Census), and (3) marginal cost of electricity of 3 Rs/kWh
(Gulati and Pahuja, 2012). All three components in this calculation are likely overly
conservative estimates, so that 8500 Rs. should be viewed as a lower bound on the true

electricity cost.

B Cadastral map villages

The villages for which we have cadastral maps are Pamireddypalli in Atmakur mandal,
Dharmapur and Ramachandrapuram in Mahabubnagar mandal, Jajapur in Narayanapet
and Thipparasipalli in Utkur madal. In Anatapur district, we have cadastral maps for
Manesamudram in Hindupur mandal, M. Venkata Puram and Manepalli, both part of the
same panchayat in Lepakshi mandal, Y.B. Halli in Madakasira Muddireddy Palli in Parigi
Chalakuru and Somandepalli, both part of the same panchayat in Somandepalli mandal,
Siddarampuram and Reddipalli in B.K. Samudram mandal, Itukalapalli in Anantapur
and Ayyavaripalli in Rapthadu mandal.

We take these maps to be representative of all villages for which we have data in each
respective mandal. We use the digitized maps, as in the example shown in Figure B.1, to
create 14 plot adjacency matrices defining the networks upon which the dynamic discrete

investment game is played.
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Figure B.1: Village Muddiredipalle

(b) Digitized Cadastral Map
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C Wealth, liquidity and drilling

Using the 2010 household survey, we compute the total value of household assets in 2009,
including agricultural land, livestock, agricultural machinery, household durable goods,
and savings in the form of bank deposits, cash and jewelry. Gross wealth should be a good
proxy for liquidity and thus allows us to test for the importance of financial constraints on
well-drilling. Table C.1 presents estimates of the determinants of drilling attempts using
the 2012-16 representative plot panel. Columns 1-3 report linear probability models with
standard errors clustered at the plot level whereas columns 4-6 report plot-level random
effects logit models. Inferences about the association between pre-sample wealth and
drilling over the 5-year panel from the two sets of estimates are virtually identical.

In column 1 (and 4), which includes only mandal dummies as additional controls,
we see that wealthier households (in 2009) are significantly more likely to drill during
2012-2016. However, once we also control for plot size with area quintile dummies (cols.
2 and 5), this effect largely disappears. Evidently, wealth and plot area are positively
correlated and there is a greater incentive to drill on larger plots. Finally, in column 3
(and 6), we control for the initial number of functioning borewells on the plot entering the
panel period, which further attenuates the wealth effect toward zero. Admittedly, these
liquidity effects, or lack thereof, are associations, i.e., not necessarily causal. For example,
despite controlling for initial borewells, unobserved (to us) suitability for groundwater
development (and thus drilling) may have augmented pre-sample wealth through past
groundwater use. Such correlations, however, would bias liquidity effects away from zero,
contrary to what we find in Table C.1.

Further, according to our 2017 survey of borewell owners, only 27% of respondents
relied on their own savings as the main source of finance for the largest components of
the cost of borewell investment, drilling the bore and purchase of the submersible pump.
Most farmers use various forms of formal and informal credit. More broadly, data from
the household credit module contained in the 2010 household survey show that, out of
the 1488 respondents, 89% had outstanding bank credit, 46% had loans from family or
friends, and 45% were borrowing from moneylenders. These percentages are very similar
across households that have at least one borewell on their land and those that have
none. This substantial credit access in our setting may explain why pre-sample wealth is
uncorrelated with subsequent drilling and provides empirical justification for a borewell

investment model that abstracts from financial frictions.
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Table C.1: Determinants of drilling

LPM RE Logit
(1) (2) (3) (4) () (6)
Log(gross wealth 2009) 0.00531***  0.00236 0.00130  0.161***  0.0701 0.0379
(0.00189)  (0.00193)  (0.00191) (0.0578) (0.0622)  (0.0622)
Plot area quintile (1st omitted):
2nd — 0.0110**  0.00960** — 0.563%**  (0.519%**
(0.00442)  (0.00444) (0.197)  (0.197)
3rd — 0.0210***  0.0185%** — 0.847***  (.768%**
(0.00556)  (0.00551) (0.203)  (0.203)
4th — 0.0222%*%*  (0.0199*** — 0.877***  (0.808%***
(0.00518)  (0.00520) (0.195)  (0.194)
5th — 0.02847%F*  (0.0234*** — 1.024%**  0.904***
(0.00645)  (0.00655) (0.213)  (0.213)
Initial borewells (0 omitted):
1 — 0.0197*** — — 0.549%**
(0.00471) (0.117)
2 — 0.0433*** — — 0.859%***
(0.0125) (0.189)
Observations 14,310 14,310 14,310 14,310 14,310 14,310
Plots 2,862 2,862 2,862 2862 2.862 2,862

Notes: Standard errors in parentheses (*** p < 0.01, ** p < 0.05, * p < 0.10), clustered at plot-level (columns 1-

3). Column 1-3 use a linear probability model; columns 4-6 use plot-level random effects logit MLE. Dependent

variable is whether a drilling attempt was made on plot during the year (from 2012-16). Each regression also

controls for mandal dummies (coefficients not reported).
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D Land values and active status

We use plot value data collected in the 2017 household survey to estimate the difference
in present discounted values between active and inactive land. Recall that an active plot
is one on which at least one drilling attempt was made during 2012-16 or which already
had at least one functioning borewell in 2012. Our survey asked each plot owner “if
you were to sell this plot today, including the associated water rights, how much would
you receive in thousands of Rs per acre?” In evaluating the present discounted value of
the projected income flows off of their land, as reflected in their stated sales price, we
presume that farmers use the same discount factor that they would use in assessing the
future net benefits from drilling. This presumption is the basis for our calibration of
for the structural estimation.

To estimate the average marginal value of an active plot, we regress the reported value
per acre of plot j (winsorized at 5% level) on the active status indicator A;. Needless to
say, A; is potentially endogenous. For instance, unobserved land amenities (e.g., ready
access to markets, good soil) may both increase land values and encourage groundwater
development. It is also plausible that poorer households both own less valuable land
and can less afford to develop their land for groundwater extraction. To deal with such
reverse causality, we focus on households owning multiple plots in the same village and
use household fixed effects to estimate the land value regression. This procedure controls
for both unobservable household-specific and location specific factors.

In Table D.1, we report three sets of two regressions, one without and one with controls
for plot area quintile. The first set of regressions is by OLS, the second with survey village
fixed effects (44 sample villages), and the third with household fixed effects (895 multi-plot
households; 502 single-plot households).

Table D.1: Plot values and active status

(1) (2) (3) (4) (5) (6)
Active (A=1)  83.06%%% 81.07F** 00.56%FF 881301  78.20%kF g0 32¥ik
(9.072)  (8.900)  (8.386)  (8.347)  (7.672)  (7.486)

Observations 2,834 2,834 2,834 2,834 2,834 2,834
Plot area quintiles No Yes No Yes No Yes
Fixed effects none none village village  household household

Notes: Robust-standard errors clustered on household in parentheses. Dependent variable is plot
value in thousands of Rs. per acre. Constant term and area quintile dummy coefficients not
reported.
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The village fixed effects estimator purges locational factors correlated with both land
values and active status at the village level. That the coefficient on active status does not
fall (it actually rises a bit) in moving from OLS to village fixed effects indicates that these
unobserved location characteristics are not a serious confound. Similarly, the finding
that the coefficient on active status changes little in moving from village to household
fixed effects suggests that wealth or liquidity constraints, insofar as they determine active
status, are not strongly correlated with plot values. The estimates center on an average
marginal value of an active plot of around 80,000 Rs/acre, representing a 25% market
premium over an inactive plot.

Finally, we note a threat to the validity of our household fixed effect estimator: un-
observed plot-level characteristics (e.g., soil quality) correlated with both land values and
active status. Recall, however, that location-specific unobservables, a far more important
component of residual variation across villages than across household plots within villages,
have little impact on our regression results. This finding suggests that any bias due to

unobserved plot-level characteristics is likely to be negligible.
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E A Monte Carlo investigation

To evaluate the performance of our structural estimation algorithm, we conduct a Monte
Carlo investigation based on 100 simulated data sets each of 2,862 plots (x 5 periods),
equal to the total number of plots in our 14 map-villages. To ease computational burden,
however, we only simulate an equilibrium for one of the map-villages.

Version I of the experiment takes as the true parameter values those of Table 2 in
the main paper. Table E.1 reports these true parameter values (column 1) alongside,
respectively, the mean, standard deviation, bias, and root mean squared error (RMSE) of
the estimates across the 100 replications. Overall, our estimator performs extremely well,
with all parameter estimates tightly centered around their true values.

In version II of the Monte Carlo, we lower by 10% the value of 6 and increase by
10% the value of Pr(D = 1), with the remaining true parameter values unchanged. As
reported in Table E.2, the estimator continues to perform well, showing very small bias
on average along with small RMSE.

Taken together, these findings indicate that our estimation algorithm is reliable and

has good small sample properties under varying conditions.

Table E.1: Monte Carlo Version I

True  Mean SD Bias RMSE

16.994 16.920 0.316 -0.074 0.323
0.776  0.780 0.026 0.005  0.027
0.722  0.712 0.033 -0.009 0.034
0.648 0.638 0.020 -0.010 0.022
r(D=1) 0.670 0.671 0.029 0.001 0.029

N o

Table E.2: Monte Carlo Version 11

True  Mean SD Bias RMSE

15.295 15.288 0.343 -0.006 0.341
0.776  0.775 0.021 -0.001 0.021
0.722  0.736 0.034 0.015 0.037
0.648 0.615 0.019 -0.033 0.038
r(D=1) 0.737 0.726 0.029 -0.011 0.031

N o
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F First-stage estimation details

F.1 Data

Borewell failure panel To estimate the annual probability of well failure, we use the
adjacency survey to construct a 2012-16 panel of reference plot borewells that are at risk
of failure. Wells enter the failure panel in the year after they are sunk; we drop those
sunk in 2016 because they would not be at risk of failure until 2017. Since failure is an
absorbing state, a well exits the panel in the year following its failure. For reasons to be
discussed, when the reference plot has multiple functioning wells we only include in the
panel the oldest, i.e., the first well sunk. The result is an unbalanced failure panel of 697
borewells over a maximum of five years; 320 of the 1,057 adjacencies do not contribute
to the panel as they have no functioning borewells on the reference plot over the sample
period. Of the 606 borewells that were functional going into 2012, about a third (195)
had failed by 2016 leading to an average annual failure rate of 7.3% (see Table F.1).

Table F.1: Well Failure by Year

Year Functional Failed Total

2012 559 47 606
(92.2) (7.8)  (100)
2013 556 41 597
(93.1) (6.9)  (100)
2014 527 53 580
(90.9) (9.1)  (100)
2015 512 33 545
(93.9) (6.1)  (100)
2016 489 34 523
(93.5) (6.5)  (100)
Total 2,643 208 2,851

92.7)  (7.3)  (100)

Notes: Percent of yearly total in
parentheses. Sample consists of
reference plot borewells subject
to failure in each year.

A key issue in modelling well failure is duration dependence, as the probability of
failure depends on the age of the well. If water tables were trending downward, then
older and thus shallower wells would dry up first. With a non-constant hazard rate of
well failure, farmers would profitably take into account not only the number of adjacent
functioning borewells but also their ages, increasing the state space and thus introducing

considerable complexity into the structural model. While Figure 1 suggests that water
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tables in our setting have been fairly stable over the last two decades, we assess the
importance of duration dependence by focusing on extant borewells in 2012, when they
had a median age of 12 years.

A simple test of duration dependence in well failure that avoids the intricate specifi-
cation issues of duration modelling is to check whether the probability of failure between
2012-16 is related to well age in 2012, which is predetermined. The results in Table F.2 in-
dicate significant duration dependence. The marginal effect from the column 1 estimates
implies that a well that was 10 years older in 2012 has a failure rate 0.092 higher over the
subsequent five years. All of this effect, however, appears to be concentrated among the
59 wells, fewer than 10% of the sample, that were more than 20 years old in 2012 (see,
especially, column 3). For investment planning purposes, then, and given discounting, it

is reasonable to assume that farmers view the well failure hazard as essentially constant.

Table F.2: Well Age and Subsequent Failure

(1) (2) (3)

Age in 2012 0.0428%** — —
(0.0130)

Agex1 4ge<10 — 0.00545 —
(0.0319)

(Age-10) X L1p< age<20 — 0.0375 —
(0.0372)

Agex ]1Age§20 — — 0.0165

(0.0169)

(Age-20) X Log< age — 0.125%%%* 0.132%%*
(0.0456) (0.0466)

Observations 606 606 606

log-likelihood -375.0 -375.3 -375.5

Equal slopes test (p-value) — 0.028 0.006

Notes: Standard errors in parentheses (*** p < 0.01, ** p < 0.05, * p <
0.10). Dependent variable is indicator for whether well failed between 2012-16.
Estimation is by ML logit. Constant term not reported. Test of equal slopes

compares spline coefficients (3 in column 2 and 2 in column 3).

Borewell flow panel Data on discharge (well flow) were collected in the 2010 survey
from all functioning borewells for the 2009-10 rabi season and, in the 2017 survey, for the
2016-17 rabi season. Farmers were asked to assess flow at both the beginning and end of

the rabi season based on the fraction of the outlet pipe that was full when pumping water
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(see Giné and Jacoby 2020). The flow measure thus varies between (“minimal” coded
as) 0.1 and (“full” coded as) 1.0, with one-quarter, one-half, and three-quarters flow
in between. Reflecting the cyclicality of water tables during the rabi season discussed
in Section 2, average flow assessments in 2016-17 (2009-10) fall from 0.84 (0.62) at the
start of rabi to 0.57 (0.35) at the end. We focus here on end-of-season flows, since well

interference becomes more salient as the local aquifer is drawn down.

Table F.3: End-of-Season Well Flow

Frequency (%)

Flow 2010 2017
0.10 32 114
(6.2) (22.2)
0.25 57 219
(11.1)  (42.6)
0.50 172 143
(33.5) (27.8)
0.75 192 35
(37.4) (6.8)
1.00 61 3
(11.9)  (0.6)
Total 514 514
(100)  (100)
Mean 0.600  0.325

Std. dev. 0.245  0.193

To estimate flow probabilities, we construct a balanced 2-year panel of 514 functioning
wells present in both the 2010 and 2017 household/plot surveys. We find that average
end-of-season flow declined in the panel by almost half from 2010 to 2017 (see Table F.3),
which may be attributable to differences in the respective monsoons. Rainfall in our
study areas during the 2016 monsoon season (responsible for rabi 2016-2017 recharge) fell
roughly 30% short of that in 2009 (see Figure A.1 for details.)

F.2 Econometric issues

Unobserved heterogeneity We allow for time invariant unobserved heterogeneity by
specifying the probability of an outcome as a function of an index z; for plot ¢ in period

(year) t as

zit = Vi+ Po+ Bi1Ny + BoRu + B3a; + €41, (F.1)
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Figure F.1: MONSOON RAINFALL AT MANDAL LEVEL BY YEAR
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Source: For mandals in AP, the Andhra Pradesh Development Planning Society under the
Planning Department of the Government of AP. For mandals in Telangana, the Telangana
State Development Planning Society under the Planning Department of the Government
of Telangana.

where v; is a random effect, N;; is the number of functioning wells in the adjacency at the
beginning of the period, R,,; is a dummy variable that takes a value of one if monsoon
rainfall in mandal m in year ¢ exceeds the 2009-17 average for the 12-mandal study area
as a whole, and a; is the area of plot 7. The time-varying error ¢;; is assumed iid logistic.

A key concern is that v; may be correlated with (Ny;, R,,;). Since nonlinear probability
models do not lend themselves to fixed effects approaches (except in some special cases),
we employ correlated random effects (CRE) under the assumption that N;; and R, are

strictly exogenous conditional on v; (see, e.g., Wooldridge 2010). In particular, let
vi = 1Ni + 2R + i, (F.2)

where bars denote reference plot-specific means of the corresponding explanatory variable
and p; is a continuously distributed mean zero random effect. Substituting into (F.1)
yields

zit = pi + Bo + P1Nit + BoRpt + B3a; + 1 N; + 2Ry + €1, (F.3)

which is the index function that we use in our estimations below.
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Selection bias Our estimation sample for the flow /failure model is selected on the basis
of whether at least one borewell was successfully sunk on the plot prior to or (in the case
of failure) during the panel period. Since the presence of a functioning borewell on a plot
could be correlated with the unobserved heterogeneity driving borewell flow and/or failure
on that plot, selection bias is a concern. However, insofar as €;; is iid over time, and given
that entry into the failure panel begins at least a “year” after the borewell is sunk (see
Figure 2), this sample selection is strictly exogeneous; in other words, conditional on v;,
selection is uncorrelated with idiosyncratic flow/failure shocks over the panel period. In
these circumstances, the nonlinear CRE estimator is robust to selection bias (Wooldridge

2019).

Misclassification error It is plausible to expect adjacency survey respondents to recall
the functioning status of borewells on their neighbors’ plots less accurately than those on
their own (reference) plots. We thus allow N, but not ny, to be subject to recall error.!
To handle this, we assume, also quite plausibly, that the number of existing neighboring
wells NP is accurately observed. We want to estimate how the probability of a well failure
at the start of rabi season of year ¢t + 1, which we denote by the binary indicator Fj,
depends upon the true number of functioning wells in the adjacency, i.e., Pr(Fy,1|Ni).
Although the true Nj; is not observed, we know that

E
Nit

Pr(Fyq|Ni) =Y Pr(Fialk)Pr(kINY), (F.4)
k=1

where Pr(k|NFE) is the discrete probability density of the true number of functioning wells
outside of the reference plot. This density is of the binomial form
)

Pr(|NE) = e -0 (F.5)

where p is the underlying annual probability of well failure.? The misclassification error

model (MEM) estimator then assumes that the likelihood contribution conditional on

'While there has been recent progress in the econometrics literature on models of misclassification
(e.g., Mahajan 2006; Hu 2008), no tractable general approaches exist applicable to our specific situation.

2More precisely, p should be thought of the average failure rate of borewells in the adjacency of
reference plot ¢, excluding those on the reference plot itself. We show empirically below that p is a
function of the number of functioning borewells in the relevant neighborhood. In the context of equation
(F.4), the relevant neighborhood is that around each of the plots adjacent to the reference plot, about
which we have no adjacency-level data. Given this, we approximate p using the district average of the
actual failure rate, yielding p = 0.104 for Anantapur and p = 0.052 for Mahabubnagar.
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unobservable p is

T NfF

g?(ﬂ) = HZPT(Fit+1’Zit(k7M))Pr(k’/\/’if7ﬁ)' (F6)

t=1 k=1

F.3 A joint model of well flow and failure

The well flow and failure panels cover 382 and 697 adjacencies, respectively, of which 360
overlap, i.e., include wells with both flow and failure observations.> This overlap allows
identification of the correlation in reference plot-level unobserved heterogeneity between
the well flow and failure processes. Such correlation is plausible if well failure is seen as
a state of zero flow forever.

We discuss the likelihood contribution of each process in turn and then derive the joint

flow-failure likelihood.

Flow To estimate the probabilities for the five well-flow states (¢ = 0.1,0.25,0.5,0.75, 1.0),
we use a CRE ordered logit for the two-year panel. The conditional likelihood contribution

of reference plot 7 is

o0 =TI ( — ()) (F.7)

m=1 1 + ecm+1+zlft (H/) ]- + ecm—i_zft

where 2/ (u) is a linear index for flow as in equation (F.3), Q; is a 5-valued flow-state

indicator and the ¢, are cutoff parameters with ¢; = —oo and ¢g = 00.*

Failure For reasons already noted, we adopt a constant failure hazard specification,

using the sequential logit as in Cameron and Heckman (1998), among others. The condi-

3Non-overlap occurs because flow data were collected on all borewells owned by the household, irre-
spective of their inclusion in the adjacency survey, and because there are adjacencies that did not have
functioning wells on the reference plot in 2010 and 2017, when flow data were collected.

40ur measure of the number of neighboring borewells differs between flow and failure estimation
datasets. In the former case, owners of functioning wells were asked about the number of functioning
borewells within a 100 meters radius of the reference plot, which is not precisely the same as the number
in the adjacency. In practice, however, the total number of borewells within 100 meters averages 2.40
as compared to 2.36 in the average agency (for the 588 reference plots with both measures available).
Since the Nj; used in the flow estimation is the contemporaneous (rather than retrospective) report of
the respondent, we assume no misclassification error in (F.7).
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tional likelihood contribution with Nj; subject to misclassification error is

Ti-1 Ny 25 (k&) Fieqa

-1 e PN ) (F5)

t=7;—1 k=1

where 2} (€) is a linear index for failure, Fj;,; is the binary failure indicator defined above,
7; is the year that the borewell first enters the panel (or 2012, whichever comes last), T;
is the last year the borewell exists in the panel (or 2016, whichever comes first), and &
is the unobserved heterogeneity in well failure. For reference plots with multiple wells,
only the first one sunk is included in the failure panel. Allowing multiple borewells on a
plot would lead to a violation of strict exogeneity due to correlation between N;; and the

failure shock.

The joint model For the joint flow/failure estimation, we follow, e.g., Eckstein and
Wolpin (1999) in assuming that the reference plot level random effects, u and ¢, are
linearly related, i.e., & = ku, where & is a covariance parameter. Defining three indicator
variables, D}, D?, D3 for whether reference plot 7 contributes, respectively, only flow data,
only failure data, or both flow and failure data, and assuming that p has a discrete
distribution with J points of support (1, ..., js) and associated probabilities (p,1, ..., pus),
the full log-likelihood is

L=) log {Z Pusli (1, fwj)} : (F.9)

where .

f bl D} [ f F b
Gl &) = | )| TF ™ [d e )] (F.10)
To estimate the probabilities of the five well flow states, mx(N, R, /), and the failure
probability, mp(N, R, ), where v/ and v¥" are, respectively, the flow and failure unob-
served heterogeneity unconditional on the CRE covariates (N;, R,,), as defined in equation

(F.2), we proceed in two steps:

Step 1: Maximize the CRE likelihood given by equation (F.9), including stepwise w.r.t.
the number of points of support J, and obtain estimates of the linear index coeffi-

cients 8,47, BF, and 4 (see equation F.3).

Step 2: Set g/ = B/, BF = BF, 4/ = ~F = 0, and re-maximize the likelihood with

respect to the unconditional heterogeneity distribution parameters (v, ...,v;) and
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(Pv1s -y puy), adding, as in Step 1, points of support until the likelihood fails to

improve. Based on these estimates, compute (N, R, l/Jf) and mr(N, R, I/]F)

The top panel of Table F.4 reports the coefficient estimates from Step 1. Column 1’s
specification ignores misclassification error, whereas column 2’s uses the MEM approach
to correct for it. Corroborating the well interference externality, we find that having
more borewells in an adjacency depresses flow and makes failure of the reference well
more likely, but only when misclassification error is taken into account. Also, having
had a “good” previous monsoon (above mean rainfall) improves well flow but does not
have a significant effect on failure, consistent with our assumption that well failure is an
absorbing state, independent of the vagaries of the monsoon. Borewells located in larger
plots have both significantly better flow, conditional on the number of functioning wells
in the neighborhood, and a lower probability of failure. Moving to Step 2, we find that
two discrete types, with associated probabilites reported in the second panel of Table F.4,
fit the data adequately inasmuch as adding a third type leads to a virtually identical Step
2 likelihood value. The negative cross-equation error correlation indicates that a borewell

with a good flow, ceteris paribus, is also less likely to fail.

Robustness Instead of a random effects ordered logit for the five flow states, we now
run a linear regression with reference plot fixed effects, where the dependent variable takes
on values from 1 to 5 (col. 1 of Table F.5). Since log(/N) in this case is not subject to recall
error, we do not instrument for it. In the case of failure, we estimate a linear probability
model with reference plot fixed effects (col. 2) and by FE-IV (col. 3) using log(NF + n)
as an instrument for log(N + n). Estimation samples for the separate flow and failure
models are identical to those used in the joint nonlinear estimation as reported in Table

F.4. Results for the two sets of procedures are qualitatively similar.
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Table F.4: Joint Flow-Failure model

Equation/covariate (1) (2)
Flow:
log(N) -0.899 -0.899
(0.172)  (0.172)
Good monsoon 1.908 1.908
(0.803) (0.803)
Log plot area 0.229 0.229
(0.0716)  (0.0716)
Failure:
log(N) 0.0632 1.140
(0.599) (0.472)
Good monsoon -0.255 -0.259
(0.259) (0.259)
Log plot area -0.324 -0.327
(0.100) (0.100)
Estimation method CRE CRE-MEM
Log-likelihood -2168 -2165
Heterogeneity (v)
Low type probability 0.0191 0.346
(0.00963)  (0.0964)
High type probability 0.981 0.654
(0.00963)  (0.0964)
Standard deviation 2.233 0.229
(73.73) (0.149)
Cross-equation correlation  -0.0950 -0.0699
(1.249) (0.0449)

Notes: Standard errors in parentheses. Maximum likelihood estimates

with reference plot-level correlated random effects (CRE). Ordered

logit cutoffs for flow, constant term for failure, mandal dummy and

CRE covariate coefficients for both equations not reported. Sample

size = 3,401. Standard deviation refers to that of v¥, the unobserved

heterogeneity unconditional on the CRE covariates; cross-equation

correlation is corr(vf 4+ &f , vF +F).
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Table F.5: Determinants of well flow and failure-linear models

flow (1-5) failure (0/1)
(1) (2) (3)
log(N) -0.513***  0.00368  0.283***
(0.106)  (0.0523)  (0.0509)
Good monsoon 1.110%*F  0.00881  0.00749
(0.347)  (0.0118)  (0.0129)
Reference plot FE YES YES YES
Observations 1,028 2,851 2,851
Number of ref. plots 514 697 697

Notes: Standard errors in parentheses clustered by reference plot
(*** p < 0.01, ** p < 0.05, * p < 0.10). Columns 1 and 2
are by ordinary least-squares; columns 3 is by two stage least
squares using the log number of existing wells in adjacency as an

instrument.
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G Heterogeneity in land productivity

In this section, we evaluate whether our model adequately accounts for unobserved het-
erogeneity in land productivity. As discussed in Appendix Section D, we have data on
self-assessed plot values, which presumably reflect their respective owners’ expectations
over future agricultural productivity. A more productive plot, in the eyes of its owner, will
attract more drilling and thus tend to have more functioning borewells. This observation
suggests using the correlation between plot value and the number of functioning borewells
on the plot as an external validation target; specifically, we consider the slope coefficient
from the regression of value per acre V; on the average number of functioning wells n; in

plot i over the previous five years:

Vi:a—i-bﬁi—i—ei, (Gl)

using only active plots (i.e., A; = 1).

Our statistical test depends on b increasing in the variance of the land productivity
parameter ¢. However, since b= cov(V;, ;) Jvar(n;), b is not unambiguously increasing in
var(#); both numerator and denominator can vary. To check how b moves in practice, we
therefore run the following exercise: First, using simulated data from our baseline model,
we obtain b = 194 ('000 Rs/acre; see Table G.1, row 1). Next, we introduce variance
in the i.i.d. (across plots) productivity term € using simple two-point distributions with
successively larger spreads, re-estimating the other model parameters accordingly. Simu-
lating data from these new models, we find that the resulting values of b all exceed 194
(Table G.1, rows 2 and 3). In sum, additional —heterogeneity would only increase b.

Turning to the actual data, we find that b = 95. A formal one-sided test cannot
reject the null hypothesis that the model-generated b (i.e., 194) is equal to this empirical
coefficient against the alternative that the model under-shoots b because it does not fully
account for unobserved heterogeneity (in fact, our model over-shoots). The p-value for
this bootstrap test (Hansen 2022) with 10,000 replications is 1.000.°

In sum, the sources of heterogeneity built into the baseline model are sufficient, indeed
more than adequate, to rationalize the observed link between land value and borewell

numbers. Adding §—heterogeneity would only worsen model fit to this moment.°

5This test is robust to classical measurement error in plot values because measurement error in a
dependent variable does not bias estimated regression coefficients. By contrast, an alternative validation
strategy that tries to match the standard deviation of plot values would conflate measurement error with
true heterogeneity in land productivity.

6Strictly speaking, in the actual data, land values reflect the present discounted stream of profits

from both irrigated and rain-fed cultivation, whereas land values generated from the model reflect only
the incremental profit from irrigated agriculture. Moreover, the non-irrigated component of actual land
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Table G.1: Evaluating #—heterogeneity

b
Model:
CV(#) = 0.0 (baseline) 194
cV(9) =0.1 200
CcV(0) =02 223
Data: 95
(64,125]

Notes: Percentile-t confidence interval, with cluster-
ing at household level, in square brackets (sample
size = 1,098 plots owned by 907 households). CV(0)
is the coefficient of variation of TFP parameter 6.
Models with CV () > 0 assume a discrete two-point,
symmetric, distribution around the baseline model

estimate of 6.

values may also be (positively) correlated with 6. In this case, however, the b from the actual data would
exceed the one that should be compared to our model-generated b, thus only strengthening our conclusion
that there is enough heterogeneity in the model already to rationalize the data.
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H Drilling: Strategic substitutability

Using a five-year panel (2012-16) on 1,057 reference plots covered by the adjacency survey,

we estimate a linear probability model for drilling of the form
diy = i + 1Ny + BoRpi—1 + €t (H.1)

where o; is a reference plot fixed effect. We assume classical measurement error in N
and use the number of existing wells in the adjacency (outside the reference plot), NZ,

as an instrument.

Identification While the strategic substitutability parameter 3, resembles a peer effect,
causal identification is not as challenging as implied by Manski (1993). In particular, since
N, reflects past (as opposed to current year) drilling by neighbors, and we are taking out
plot fixed effects, [3; is identified even if contemporaneous plot-specific drilling shocks
g are (spatially) correlated between plots in the same adjacency.” While identification
does break down if ¢; is both spatially and serially correlated, a spurious finding of
strategic substitutability could only be explained by either negative spatial or negative
serial correlation in drilling shocks, either of which is implausible. In the likelier scenario
of positive spatial and serial correlation of drilling shocks, our estimate of 5; would be
biased upward, i.e., toward zero, and thus away from strategic substitutability.® Indeed,
we test for one such source of bias below by conditioning on the number of own borewells

on the reference plot.

Results Column (1) of Table H.1 reports fixed effects least-squares estimates showing
zero impact of neighboring wells on drilling. Column (2) displays the first stage regression
of N on the instrument N and column (3) the resulting FE-IV estimate. We find
a significantly negative effect of neighboring wells once we instrument for measurement
error. One concern, noted above, is that, if there is spatial correlation in the unobservables,
then AVF may be correlated with the residuals, which contain the effect of own borewells

on drilling. To assess this, in column (4) we add dummies for the number of borewells

"Pfeiffer and Lin (2012) estimates the effect of a neighbors’ groundwater pumping on simultaneous
own pumping behavior using a cross-sectional instrumental variables strategy.

8 A referee points out that this argument hinges on the nature of the common property externality. If
groundwater extraction involves an important stock externality (see fn. 2 in the main text), then there
could be strategic complementarity in drilling decisions, wherein one farmer’s attempt to capture the
resource encourages other potential users to drill. In this case, positive spatial and serial correlation of
drilling shocks would bias us toward strategic complementarity. As noted, however, the stock externality
is not operative in our setting.
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on the reference plot to remove the effect of own borewells from the residuals.” That
there is no appreciable difference between the estimates of /5 across columns (3) and
(4) gives us further confidence that negative effect of neighboring wells on reference plot
drilling is indeed causal. Finally, in columns (5) and (6), for the purposes of validating
the structural model in Section 4.5, we replicate the column (3) and (4) specifications,

respectively, dropping observations with more than one functioning well on the reference

plot.
Table H.1: Determinants of drilling 2012-16—Linear probability models
) ) ) ) ) ()
drill N drill drill drill drill
No. func wells exc ref plot (N)  -0.0154 -0.0482*%*  -0.0485** -0.0442** -0.0381**
(0.0108) (0.0213)  (0.0199)  (0.0198)  (0.0192)
Good Monsoon (R) -0.00340  0.000760 -0.00248  -0.00257  0.00124  0.000391
(0.00881) (0.00775) (0.00884) (0.00866) (0.00888) (0.00877)
No. exist wells exc ref plot 0.900***
(0.0285)
1 func well on ref plot -0.243%%* -0.256%**
(0.0241) (0.0241)
2 func wells on ref plot -0.447%F%
(0.0538)
Reference plot FE YES YES YES YES YES YES
Observations 5,285 5,285 5,285 5,285 4,837 4,837
Number of ref. plots 1,057 1,057 1,057 1,057 988 988

Notes: Standard errors in parentheses clustered by reference plot (*** p < 0.01, ** p < 0.05, * p < 0.10). Columns 1
and 2 are by ordinary least-squares; columns 3-6 are by two stage least squares using the number of existing wells in
adjacency (outside of reference plot) as instrument. Columns 5 and 6 drop observations with more than one functioning

well on the reference plot.

9nsofar as past drilling successes lead to more borewells on the reference plot, the fixed effects esti-
mator of the own borewell coefficients in this short panel are biased (as per Nickell 1981). Thus, we treat
the column (4) results as a specification test.
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I Transitional dynamics

I.1 Equilibrium

We now describe the Adjacency Equilibrium over the transition path of the benchmark
village economy to a new steady state following the introduction of a tax 7 on borewells at
date t = 1. The village map transits to a new (steady-state) Adjacency Equilibrium AE..
We assume that i) CCPs along the transition depend only on the state of the adjacency
and date ¢, and ii) that the plot owner has beliefs about the evolution of X(;;); along an
“average” transition. Assumption ii) requires that equilibrium beliefs about the state of
the adjacency at date t be correct when averaged over the map’s stochastic transition
paths. Thus, we have

Definition: Let F5°(X) (or Fy° in short) be the stationary distribution over the state
of the map at the initial Adjacency Equilibrium AEy. An Adjacency Equilibrium over the
transition path is a vector of choice probability functions {C'C P (X i1s), nit) }i2, and of
beliefs {77 (Xiyes1] Xiney, naie) }o21 such that: a) CCPs and beliefs converge to the CCPs
and beliefs of AE,; b) given beliefs £, the decision rule CCP; is the solution of plot
owner i’s dynamic game “against nature” at every ¢; and c) beliefs at each t are correct
on “average”. That is, let F,(X;; {CCP,}._,, F§°) be the joint distribution over the state
induced by the primitives, the vector of CCPs from date s = 1 to ¢ and the initial steady
state distribution of the map Fg°. Further, let Fy(Xo)| X1y, nue{ CC Py}, F5°) be the
conditional distribution implied by Fy(X;; {CCP,}._;, F§°). Then,

s=1»

F;‘?(X(il)tqtl = $(i1)t+1‘X(i1t) = T(i1)ty nit) = ZFt(aj(zQ)t‘x(il)t; Tit; {CCPS}Z:M Fooo)

T(i2)t

Ft(x(il)t_H |$(z‘1)t, T (32)ty Tit; CCPt)‘ (1-1)

1.2 Solution algorithm

Recall that in our empirical structural model we reduce the dimensionality of the AE by
partitioning the set of adjacencies into types, such that all adjacencies of the same type
share beliefs and CCPs, and we limit the state of the adjacency to (N, n). We compute

an AE along the transition path as follows:

Step 0 Solve for the steady state in the benchmark no-tax economy (7 = 0) using the

algorithm in the main text and recover the steady state distribution F{®.
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Step 1 Solve for the steady state in the counterfactual economy (7 > 0) using the algo-

rithm in the main text and recover the value function for each plot type (V7).

Step 2 Assume that the village converges to this counterfactual steady state and that it

is in this steady state in period T.

Step 3 Guess a sequence of beliefs {Ft}thl (as an initial guess, linearly interpolate beliefs

from the benchmark to the counterfactual steady state).
Step 4 Solve for plot owner’s decision as follows:

Step 4.1 Start in period T-1.

Step 4.2 Given value function V3 and beliefs FT_l, solve for the CCPr_; and

recover Vp_j.

Step 4.2 Iterate until + = 1 and recover {CCP}L ;.

Step 5 Given {CCP;}L,, sample an initial state of the map from the benchmark econ-
omy in the steady state Fy® and simulate a transition of well drilling decisions,
successes, and failures in every plot on the map from ¢ = 1 to 7. Replicate this

simulation Ng times, e.g. Ng = 250.

Step 6 From the transition simulations, construct estimates of the one-period ahead
state transition matrices Fy(N'|N,n) for each plot type (i.e., averaging across plots
on the map of the same type at the same date). Update beliefs and go back to Step

4 and continue iterating through step 6.

Step 7 Stop once the incremental change in {CCP,}L | is sufficiently small.

J Spatial distribution of drilling

We simulate steady states in the network and island economies for one of our map-villages,
Ayyavaripalli, with the 6 parameter calibrated in the island economy so that the resulting
borewell density matches that of the network economy in this village. We then simulate a
long history of drilling decisions by farmers, along with well failures, and compute average
drilling rates at the plot level.

Figure J.1 shows the spatial distribution of average drilling rates under both the
network and island economies, along with the corresponding histograms. In both maps,

colors represent deciles of drilling probability, with yellow indicating plots with the highest
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drilling rates and darker shades indicating lower rates. In the network economy (left),
farmers must drill more frequently to sustain well density due to local externalities. In
the island economy (right), fewer drilling attempts are needed, as wells are less likely to

fail given the assumed absence of externalities.

Figure J.1: Distribution of drilling rates in Ayyavaripalli

(a) Network Economy (b) Island Economy
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