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1 Introduction

Investment in land can substantially affect the returns to investing in neighboring land while having

negligible impacts further away. These localized externalities induce strategic interactions, where each

landowner’s irreversible investment depends on past and expected future investments of their neighbors,

who are in turn influenced by the decisions of their neighbors, and so on. Such a network-game

structure presents a significant methodological challenge when quantifying how a policy change would

affect aggregate welfare in general equilibrium. This paper develops a tractable approach to estimating

policy counterfactuals for the case of borewell investment in southern India, a context where both local

spillovers and government intervention in private investment decisions are particularly salient.

Groundwater has become the dominant source of irrigation in India, driving increased agricultural

intensification (Jain et al., 2021) and rising rural income (Sekhri 2014). To extract this resource, millions

of borewells have sprung up in recent decades, most equipped with submersible electric pumps (Shah

2010; Jacoby 2017). As a borewell operates, the water table around it drops, creating a conical draw-

down region centered on the pump. If two borewells are close enough to one other, their respective cones

of depression overlap, significantly reducing the water flow from each well. An additional functioning

borewell nearby thus lowers the discharge of any given borewell, and may ultimately lead to its failure,

i.e., when discharge is too low to warrant any cultivation whatsoever.1 In the dry season, during which

groundwater is the sole source of irrigation in most of India, well interference becomes an important,

albeit highly localized, common property externality.

Most Indian states provide farmers free or highly subsidized electricity to run their pumps, artifi-

cially inflating the economic returns to well-drilling.2 Groundwater development has thus devolved into

“drilling for subsidies”, a form of rent-seeking in which smallholders sink costly wells that would not

be economically viable absent these policy-induced distortions (Badiani-Magnusson and Jessoe, 2018).

By driving the gross return for the marginal borewell below the private cost of drilling plus the fiscal

cost of the subsidy, government policy exacerbates the welfare losses already created by common prop-

erty externalities. Given well interference, evaluating a policy reform, such as electricity cost-recovery,

requires incorporating strategic interactions between neighboring farmers arrayed in a spatial network.

Building on the literature surveyed in Aguirregabiria and Mira (2010), we thus develop and estimate

a dynamic discrete borewell investment game played on a large (but necessarily bounded) map repre-

senting the network of adjacent agricultural plots in the locality. Structural estimation requires taking

1Blakeslee et al. (2020) find large negative economic impacts of well failure in the South Indian state of Karnataka.
2In 2013, Indian state governments spent US$11.4 billion to subsidize agricultural power, although this figure likely

understates the fiscal drain (Sidhu et al., 2020). Since metering of usage is rare, subsidies generally take the form of low
or nonexistent flat charges.
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into account each plot owner’s beliefs about the temporal evolution of borewells on all relevant plots,

a potentially vast state-space. To avoid this “curse of dimensionality”, we make the bounded rational-

ity assumption that investment decisions depend only on beliefs about borewells located in adjacent

plots. This allows for a novel and tractable estimation strategy that we take to panel data from two

southern Indian states. Given parameters of the production technology and other model primitives,3

we simulate investment on the plot network map for many periods until a steady state is reached, at

which point we compute beliefs based on the temporal evolution of wells in each plot owner’s adjacency,

i.e., the collection of bordering plots determining the local externality. We nest the full solution to this

adjacency equilibrium within a Simulated Method of Moments (SMM) estimation algorithm, matching

the observed aggregate annual drilling rates by plot size and by the number of currently functional

borewells on the plot to their model-based counterparts. As a validation, we use data simulated from

the model to closely replicate the reduced-form impact of neighboring borewells on the propensity to

drill, a strategic substitutability moment not explicitly targeted in our estimation.

The structural estimates allow us to calculate the social value of groundwater development given

equilibrium borewell density, flow and failure rates. We find that this social value per acre of land with

groundwater potential is practically zero, as the expected discounted cost of drilling plus the cost (to

society) of the electricity for pumping just exceeds the expected discounted value of agricultural output.

Next, we compute a counterfactual equilibrium in which borewell users are required to cover, through

fixed annual payments per functional well, the 36,000 Indian Rupees (Rs or US$ 560 in 2017) capitalized

fiscal cost of the subsidy per acre. This cost-recovery equilibrium entails a 70% drop in borewell density

coupled with an 11,000 Rs/acre (US$ 170) increase in the social value of land, implying that deadweight

loss is 30% of the fiscal cost of the subsidy. To quantify how the localized externality drives this result,

we construct an alternative economy with no well interference. In this economy, the ratio of deadweight

loss to fiscal cost of the subsidy is only 11%. We also investigate the socially optimal Pigouvian borewell

tax. While this tax exceeds the cost of electricity by 18%, social welfare is not much higher than in

the cost-recovery equilibrium. So, once electricity is correctly priced, borewell density decreases to the

extent that well interference becomes economically unimportant at the margin. Lastly, we examine the

distributional implications of electricity cost recovery, and borewell taxation more generally, suggesting

a simple compensation scheme to reduce inequities and build political support for reform.

Despite the prevalence of local investment spillovers, especially in natural resource economics, the

literature on dynamic network games remains sparse. Indeed, the only other attempt to estimate such

a model to our knowledge is that of Hodgson (2021) in the context of oil field exploration, where

3Specifically, we obtain well interference effects in a first-stage by jointly estimating the probability of well failure and
the probabilities of different well flow states as functions of the number of neighboring (functioning) borewells.
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the externality is informational and the key inefficiency is thus one of free-riding rather than of over-

investment. All other empirical applications of network games are static (see, e.g., Acemoglu et al. 2015,

Xu 2018, König et al. 2017). In our setting, a static model in which plot owners sink their borewells

once and for all would not account for the empirically important and inherently dynamic feature of well

failure. A one-period model also cannot speak to the short-run distributional implications of a borewell

tax. By contrast, a dynamic model allows us to calculate how such a policy change impacts landowners

with and without functioning borewells at baseline along the entire transition path to the new steady

state, thereby informing the design of practical compensation schemes. Finally, as an empirical matter,

a dynamic model enables us to exploit data on drilling choices conditional on the current number of

functioning borewells – i.e., the dynamic decision rule – for identification of structural parameters.

As the first paper to incorporate well interference externalities in a full dynamic general equilibrium

model of drilling decisions, this paper also contributes to the economics of groundwater extraction,

a literature focused almost exclusively on the United States and, to a lesser extent, on the world’s

largest groundwater user, India. Pfeiffer and Lin (2012) considers well interference externalities in

the High Plains Aquifer of Kansas whereas Sears et al. (2022) studies strategic interactions among

neighboring extractors in California. Both of these papers are concerned with the intensive margin

(pumping) as opposed to the extensive margin (drilling) and neither models the spatial network game.

Groundwater research in India focuses on the the deep alluvial aquifers of the northwest, where ‘mining’

of fossil groundwater is a serious concern (see Fishman et al. 2011). In this context, the calibration

study of Sayre and Taraz (2019) combines decisions about both groundwater pumping and investment

in deeper wells within a partial equilibrium framework, i.e., ignoring well interference externalities.

Ryan and Sudarshan (2022) econometrically estimates the welfare cost associated with over-pumping

in Rajasthan. By focusing on the non-local, aquifer-wide, pumping externality and by taking the

number of borewells as fixed, their paper abstracts from both well interference and from drilling costs.

Ryan and Sudarshan (2022) finds that electricity rationing to agriculture leads to roughly the socially

optimal quantity of groundwater pumping on average. Similar rationing in our study areas undoubtedly

also limits over-pumping, so that whatever intensive margin distortion remains is likely to be small in

comparison to the extensive margin distortion that we emphasize.

The next section of the paper describes the setting and data. Section 3 lays out the model of borewell

investment and local externalities. Section 4 discusses the structural estimation procedure and presents

the results thereof. Section 5 considers counterfactual policies, including the optimal borewell tax, and

Section 6 concludes the paper.
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2 Setting and Data

2.1 Context

Before its partition into Andhra Pradesh (AP) and Telangana in 2014, unified Andhra Pradesh was one

of the most important agricultural states of India, accounting for about 7 percent of gross cropped area

nationally, with groundwater supplying roughly half of its irrigation. As argued by Kumar et al. (2011),

however, the economic efficiency of groundwater extraction in unified AP had been falling substantially,

with the tripling in the number of borewells to more than 1.5 million from 1995-2010 (see Jacoby 2017),

leading to high rates of well failure, lower area irrigated per well, and higher energy requirements for

groundwater pumping due to well interference. Meanwhile, power supply to agriculture for running

electrical pumps has become a political issue all over India. In 2004, a newly elected government

of unified AP abolished flat rate electricity charges to farmers, which had previously covered just 11

percent of the cost of provision, and introduced free agricultural power, a move swiftly followed by the

major states of Tamil Nadu, Karnataka, and Punjab.4 Farmers in AP and Telangana typically run their

pumps continuously during the fixed number of hours (7-9) per day when this free electricity is made

available for agricultural use (Fishman et al., 2023).

Much of South India is underlain by shallow hard rock aquifers with limited groundwater storage

capacity. Recharge from monsoon rains is thus largely depleted through pumping during the subse-

quent dry season; in contrast to northwest India, there are no deep groundwater reserves available to

mine. Figure 1 indicates that the time-series of depth to water table across unified AP, a measure of

overall resource depletion, is dominated by intra-annual variability, showing practically zero trend from

1998-2014, the most recent years for which we have consistent data before the partition.5 Because of

their low transmissivity (velocity of horizontal groundwater flow), hard-rock aquifers accentuate well

interference. In our setting, an interwell spacing of at least 250 meters is recommended to avoid interfer-

ence effects (Chandrakanth 2015). Blakeslee et al. (2020) detail the process of well failure in hard-rock

aquifers, highlighting local hydrogeological features, i.e., sub-surface fractures fed from different sources

of recharge, as opposed to aquifer-wide depletion, a process hastened by competing extraction among

neighbors. In sum, well interference is the predominant groundwater pumping externality in our setting,

one that is both localized and static, affecting only current groundwater availability.

4Shah et al. (2012) estimates that these subsidies in AP amounted to 94% of the gross value of its agricultural output
before partition. The corresponding figure in the more agriculturally productive state of Punjab is only 12%. Note that
Shah et al. (2012) uses an annual electricity cost per borewell of about US$450 for the entire state of AP circa 2010,
whereas we obtain a much more conservative figure of US$180 (8,500 Rs) in our study areas (see Appendix A).

5Hora et al. (2019) argues that such water table trends are biased upward by relying on surviving (i.e., non-failed)
observation wells to measure groundwater levels across time. Indeed, our analysis of well failure in Appendix D is
consistent with a secular, but rather slow, decline in water tables in our study area.
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Figure 1: Water table fluctuations: 1998-2014

Notes: Average depth to water table in meters below ground-level from all state obser-
vation wells and rainfall in millimeters by month (Source: Andhra Pradesh Ground-
water Department, http://apsgwd.gov.in/swfFiles/reports/state/monitoring.pdf;
last accessed Feb. 10, 2016).

2.2 Data

Our data come from the drought-prone districts of Anantapur (Andhra Pradesh) and Mahabubnagar

(Telangana), originally the backdrop for the weather insurance study of Cole et al. (2013). As shown in

Giné and Jacoby (2020), groundwater availability and the related development of groundwater markets

in these drought-prone districts is extremely limited compared to districts in the intermediate range

of annual rainfall and, especially, to those in water-abundant coastal AP. Only farmers with access to

a functioning borewell can cultivate during the dry (rabi) season, typically growing groundnut, maize,

mulberry, and paddy in Anantapur and paddy and groundnut in Mahabubnagar. In the wet (kharif)

season, during which groundwater is used to supplement monsoonal rainfall, the main crops in both

districts are paddy, sorghum, and groundnut.

Highly fragmented landownership also contributes to well interference externalities. To obtain the

typical spatial layout of separately owned plots, we digitized cadastral maps for at least one village in

each of the 12 mandals (sub-districts or counties) covered by our survey (see Appendix B). In all, we
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have 14 such village maps containing 12,330 land parcels; the median plot size is only 2.02 acres.

Representative plot sample In 2017, we were able to re-interview 1,436 of 1,488 randomly selected

farm (landowner) households originally surveyed in 2010 by Cole et al. (2013). The 2017 survey in-

cludes a history of well-drilling attempts on and around each of the household’s plots since 2011 and

records every borewell present on each plot regardless of whether currently functional (i.e., having non-

negligible discharge) or even dismantled. From this information, we construct a retrospective five-year

panel of drilling attempts and the number of functional borewells on 2,862 plots. Highlighting the

representativeness of this sample, median plot area is 2.00 acres, virtually the same as that found in

the independent plot sample from the 14 digitized cadastral maps mentioned above. Data on discharge

or flow for every functioning borewell were also obtained in the 2010 and 2017 surveys with reference

to, respectively, the 2009-10 and 2016-17 rabi seasons (see Appendix D for details).

Figure 2: Timeline

Oct./Nov.

Rabi planting Rabi harvest

March/April

year t

Monsoon 
ends

June/July

Monsoon 
begins

Well drillingWell failure

summer

year t-1

Aquifer recharged Aquifer depleted

Timeline Figure 2 provides an event timeline to guide our empirical and theoretical analyses. The

“year” begins with rabi season planting just after the monsoon. Borewell drilling occurs in the pre-

monsoon (summer) season when water tables are at their lowest, thereby assuring farmers that, if

successful, the new borewell will yield groundwater throughout the rabi season. New borewells are thus

available for pumping only in the year following a successful drilling attempt, with year t “success”

defined as being functional at least during year t+1. Since our survey does not record the exact month

that a borewell failure occurs (or is “realized” by its owner), we assume that, if a borewell is reported

as failed in year t, this failure is effective only as of the beginning of year t + 1, reducing output from
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year t + 1 forward; in other words, we treat this borewell as functioning throughout year t. For the

plot-level retrospective panel, we drop data from 2017 because, as the survey was administered in May,

not all drilling attempts or well failures that occurred in 2017 were necessarily captured.6

Figure 3: Drilling attempts
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(a) All plots
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(b) Active plots

Notes: Average annual drilling attempt rate by plot area quintiles and by number (n) of
functioning borewells on the plot. Panel (a) is for the representative sample of plots; panel
(b) is for active plots only (i.e., those which had any functioning borewell or drilling attempt
during 2012-16).

Drilling patterns There were 526 drilling attempts made on 437 plots between 2012-16, only 197,

or 37.5%, of which were successful (i.e., resulted in a functional borewell). Panel (a) of Figure 3

shows annual drilling rates by the number of functioning borewells and plot area quintiles. While the

propensity to drill is higher on plots with more functioning borewells, this may reflect heterogeneity

in groundwater potential; where drilling is profitable, there is both more drilling and more functioning

borewells. To explore further, we restrict attention to those plots on which at least one drilling attempt

was made during 2012-16 or which already had at least one functioning borewell in 2012. The owners

of such “active” plots (39% of the representative sample) evidently believed that they had potential for

groundwater development. Panel (b) shows a negative relationship between functioning borewells and

6For consistency with the adjacency survey panel (see below), we also drop data from 2011.
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drilling on active plots, consistent with diminishing marginal returns to investment. Thus, conditional

drilling moments will provide identifying information about the underlying production function. The

contrast between panels (a) and (b) further indicates that only a subset of plots (imperfectly proxied

by their “active” status) may be suitable for groundwater development. We later term these suitable

plots “developable” and treat this unobserved type (D) as a latent factor in our structural estimation.

Adjacency survey We define an adjacency as the set of all agricultural plots contiguous to a reference

plot, inclusive of it. As part of the 2017 household survey, an adjacency survey was administered covering

1,057 farmers with an eligible reference plot. Eligibility required that at least one drilling attempt had

been made in the last seven years either on the plot itself or within a 500 meters radius of the plot. (If

the household had two or more eligible plots, one was chosen at random). The adjacency survey asks

each reference plot owner for retrospective information annually, going back to 2011, about the existence

and status (functioning or not) of all borewells in the adjacency. Following our timing conventions, we

match drilling activity and borewell failure on reference plot i in year t with the number of functioning

wells on the reference plot, nit, and with the number of functioning wells in the adjacency outside of

reference plot, Nit, both observed at the beginning of year t, i.e., before any year t failures. (We drop

data from 2011 because we do not have Nit for that year).

Throughout the paper, we denote the total number of functioning wells in the adjacency by Nit,

where Nit ≡ Nit + nit.

3 A Model of Borewell Investment

In this section, we present a dynamic equilibrium model of borewell investment on a large plot network.

We assume that borewell investment is not constrained by farmer liquidity.7

3.1 Preliminaries

Let the incremental agricultural output of a functioning borewell on plot i at time t be

yit = θ
[
αqδit + (1− α)aδi

] 1
δ , (1)

where (θ, α, δ) are parameters, ai is plot area, and qit is well discharge or flow. Yearly flow is stochastic

and thus unknown to the farmer prior to drilling and has a discrete distribution with K points of

7Results reported in Appendix C show no link between the pre-sample wealth of the plot owner and their propensity
to drill from 2012-16. This finding, along with other descriptive evidence adduced in Appendix C, suggests that it is
reasonable to abstract from financial frictions.
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support {qit1, ..., qitK} each with probability πitk. Along with constant elasticity of substitution (CES),

production function (1) imposes constant returns to scale (CRS); i.e., output per acre depends only on

flow per acre.8 The scale parameter θ converts physical output into 2017 Indian rupees (Rs).

We assume that only functioning borewells within plot i’s adjacency influence flow and failure of

borewells on that plot; borewells outside of the adjacency cause no interference. This is a reasonable

assumption given the typical size of plots and range of well interference effects in our setting.9 Year t

flow-state probabilities πitk thus depend on the number of functioning borewells in the adjacency at the

beginning of year t, as well as on past monsoon rainfall (i.e., aquifer recharge), according to

πitk = πk(Nit, Rt−1). (2)

The well interference externality entails higher Nit shifting the probability mass to low flow states. A

borewell remains functional, with positive discharge, until stochastic failure occurs with probability

πFit = πF (Nit, Rt−1), which again incorporates the localized externality. Since failure is an absorbing

state, a failed borewell produces no further output.10

We assume that the probability of a successful drilling attempt, πS, is constant. Each attempt

entails a fixed cost cd for sinking the bore hole and, if successful, an additional cost of installing a pipe,

casing, and hooking up the electrical connection; the submersible pump itself is removable and thus we

do not consider it a sunk cost. The total cost of a successful attempt is, therefore, cs > cd.

Finally, for the sake of tractability, we assume that at most two wells can function simultaneously

on any given plot so that Nit ∈ {0, .., 2pi}, where pi is the number of plots in adjacency i.11 Drilling

success, failure, and discharge events for two wells on the same plot are independent random variables

(conditional on the plot-specific unobserved heterogeneity described in Section 4). Using superscripts to

enumerate wells, incremental output of a plot with two borewells depends on the sum of their discharges

q1it + q2it, since water from both wells can be pooled and dispersed throughout the plot.

8The Online Appendix of Giné and Jacoby (2020) tests and cannot reject CRS based on a Cobb-Douglas production
function estimation in a closely related setting.

9In a chessboard configuration of identical plots averaging one hectare (as in our data) with borewells located at the
center, the distance between a borewell in the reference plot and one elsewhere in the adjacency would be 100-140 meters,
well within the range of interference effects mentioned by Chandrakanth (2015). Expanding the definition of adjacency
to include a second ring of identical plots would increase the average distance between wells to 200-280 meters, which is
beyond the range for interference effects in our setting.

10While we allow the failure probability to depend on rainfall from the past monsoon for the sake of generality, a null
effect of rainfall, as we indeed find in Section 4.3, is more consistent with well failure being an absorbing state.

11In our representative plot panel, 3 or more functioning wells occurs in just 35 out of all 14,310 plot-years.
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Summarizing, expected output conditional on monsoon rainfall may be written as

E[yit(Nit, nit)|Rt−1] =
K∑
k=1

πitk(Nit, Rt−1)θ
[
α(q1itk)

δ + (1− α)aδi
] 1

δ if nit = 1

=
K∑
j=1

K∑
k=1

πitj(Nit, Rt−1)πitk(Nit, Rt−1)θ
[
α(q1itk + q2itj)

δ + (1− α)aδi
] 1

δ if nit = 2.

(3)

3.2 Borewell investment decision

We now consider the discrete choice to drill (d = 1) or not to drill (d = 0) and derive the plot owner’s

decision rule or conditional choice probability CCP (N , n) ≡ Pr(d = 1 | N , n), temporarily dropping

subscripts for ease of exposition. We first describe the dynamic decision facing the owner of a plot with

area a in an adjacency with p plots, in isolation, i.e., taking as given their beliefs about the evolution of

the state of the adjacency. As noted, the state space of the plot owner consists only of the total number

of wells in the other plots of the adjacency N ∈ {0, .., 2(p − 1)} and the number of own functioning

wells, n ∈ {0, 1, 2}. In the next subsection and later in Section 4.1, we discuss this assumption and its

role in a tractable equilibrium model of beliefs and conditional choice probabilities.

By assumption, state n = 0 or n = 1 are the only cases where investment can occur. A plot

owner with n = 0 may decide not to drill, with payoff value v00(N ) + ϵ00, or to drill, with payoff value

v0I(N ) + ϵ0I . As in a random-utility framework, choice-specific payoffs have additive “deterministic”

and “random” components. The random components of the payoff of waiting (ϵ00) or drilling (ϵ0I) are

realized every period before choices are made, iid across choices and time, and unobserved by other plot

owners in the adjacency, each of whom are drawing their own random components.

The deterministic components, which are known to the plot owner conditional on the observable

state variables and parameters, include the static one-period profits (expected value of output minus

drilling costs, if any) and the expected continuation values. For the no drilling (waiting) choice,

v00(N ) = β EV (N ′, 0)

= β
∑
N ′

F̃ (N ′ | N , 0)V (N ′, 0)
(4)
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and for the choice of making a drilling attempt

v0I(N ) = πS

(
−cs + β

∑
N ′

F̃ (N ′ | N , 0)V (N ′, 1)

)

+ (1− πS)

(
−cd + β

∑
N ′

F̃ (N ′ | N , 0)V (N ′, 0)

)
,

(5)

where the value function V (N , n) is defined below, β is the discount factor and F̃ (N ′ | N , n) reflects

beliefs about the probability of N ′ functioning wells in other adjacency plots next period conditional on

N functioning wells in other adjacency plots and on n functioning wells on the reference plot (n = 0,

in this case) this period. Since drilling occurs after rabi season production (see Figure 2), the increase

in expected output from any successful attempt is only realized in the next period.

We assume that the random components associated with the choices of waiting and drilling, (ϵ00, ϵ0I),

are each iid Type-1 extreme value with location parameter 0 and scale parameter σ. Further, denote

by V (N , n) the beginning-of-period value function for the plot owner, before these random components

of payoffs are realized. Taking expectations for n = 0, we have

V (N , 0) = Emax
{
v00(N ) + ϵ00, v0I(N ) + ϵ0I

}
(6)

= σ
(
γ + log

(
exp(v00(N )/σ) + exp(v0I(N )/σ)

))
where the second line follows from the Type-1 extreme value assumption and γ is Euler’s constant.

Similarly, a borewell owner with n = 1 may decide to wait, with payoff value v10(N ) + ϵ10, where

v10(N ) =E
{
E[y(N + 1, 1)|R]

+ β

(
(1− πF (N + 1, R))

∑
N ′

F̃ (N ′ | N , 1)V (N ′, 1)

+ πF (N + 1, R)
∑
N ′

F̃ (N ′ | N , 1)V (N ′, 0)

)}
,

(7)

using equation (3) for the inner expectation of output conditional on monsoon rainfall R and taking

the outer expectation with respect to the distribution of R. Alternatively, the plot owner may attempt
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to drill a second borewell, with payoff value v1I(N ) + ϵ1I , where

v1I(N ) = E
{
E[y(N + 1, 1)|R]− csπS − cd(1− πS)

+ β

(
πS(1− πF (N + 1, R))

∑
N ′

F̃ (N ′ | N , 1)V (N ′, 2)

)
+ β (πSπF (N + 1, R) + (1− πS)(1− πF (N + 1, R)))

×
∑
N ′

F̃ (N ′ | N , 1)V (N ′, 1)

+ β(1− πS)πF (N + 1, R)
∑
N ′

F (N ′ | N , 1)V (N ′, 0)
}
.

(8)

We can now write

V (N , 1) = Emax
{
v10(N ) + ϵ10, v1I(N ) + ϵ1I

}
(9)

= σ
(
γ + log (exp(v10(N )/σ) + exp(v1I(N )/σ))

)
where the second line follows, again, from an analogous Type-1 extreme value assumption on (ϵ10, ϵ1I).

Finally, we have

V (N , 2) = E
{
E[y(N + 2, 2)|R]

+ β

(
(1− πF (N + 2, R))2

∑
N ′

F̃ (N ′ | N , 2)V (N ′, 2)

+ 2πF (N + 2, R)(1− πF (N + 2, R))
∑
N ′

F̃ (N ′ | N , 2)V (N ′, 1)

+ π2
F (N + 2, R)

∑
N ′

F̃ (N ′ | N , 2)V (N ′, 0)

)}
.

(10)

Note that equations (4)-(10) combine to form the Bellman equation for this investment problem.

The discrete choice to attempt drilling a borewell in the reference plot is thus

d = d(N , n) =

{
1 if n < 2 and vnI(N )− vn0(N ) > ϵn0 − ϵnI

0 otherwise,

using equations (4), (5), (7) and (8). With logit random utility shocks, the decision rule as perceived

12



by the researcher (and by neighbors) is characterized by the CCP function

CCP(N , n) = Pr(d = 1 | N , n) = Pr(ϵn0 − ϵnI < vnI(N )− vn0(N ))

=
exp(vnI(N )/σ)

exp(vnI(N )/σ) + exp(vn0(N )/σ)
.

3.3 Adjacency equilibrium

Before characterizing the equilibrium of the dynamic drilling game, we introduce the concept of a village

“map”, or plot network, upon which this game is played. We use 14 cadastral maps representing at

least one village in each mandal (see Appendix B). While the borders of these administrative maps are

arbitrary in that they do not correspond to salient geographic or geological features, each contains many

plots and as a result “truncation-at-border” effects should have negligible empirical consequences.12

Formally, a cadastral map with P plots is characterized by a P × 1 vector A listing the area of each

plot and a P × P adjacency matrix M with typical element Mij = 1 if plot j adjoins plot i and 0

otherwise, and with Mii = 1. Ignoring for now plot-specific heterogeneity, {A,M} fully characterizes all

adjacencies in the map. For instance, plot i has an area equal to the i-th element of A and its adjacency

has
∑

j Mij plots because plot j with Mij = 1 belongs in plot i’s adjacency. Let M(ih) be the set of

plots h-level adjacent to plot i so that M(i1) = {j : Mij = 1} is the set of immediate (1-level) neighbors

in i’s adjacency, M(i2) =
{
j : j /∈ M(i1), j ∈ M(k1), k ∈ M(i1)

}
is the set of 1-level adjacent neighbors

of i’s 1-level adjacent neighbors, and so on for all “layers” h.

Let the state of plot i in period t be the number of functioning wells on the plot at the beginning of

the year nit ∈ {0, 1, 2} . Further, let Xt = {nit : i = 1, . . . , P} be the state of the map, representing the

entire spatial distribution of borewells in the cadastral map. Now, define X(ih)t =
{
njt : j ∈ M(ih)

}
,

whereX(i1)t collects the state of the neighbors of reference plot i, X(i2)t collects the state of the neighbors’

neighbors, and so on.

Thus far, we have taken beliefs about the evolution of the number of functioning wells in the

adjacency as given, viewing the plot owner’s investment decision as a game “against nature”. Consider

now a Markov-perfect equilibrium (MPE), in which beliefs and decision rules (CCPs) of all plot owners

are consistent with one another. Our state space (N , n) implicitly assumes that plot owners ignore

the status of wells on successive layers of plots outside their own adjacencies. This restriction is not,

in general, implied by our key assumption that well interference is limited to functioning wells in the

adjacency. Indeed, information on the status of wells in the second layer might help agents predict

immediate neighbors’ investment behavior and thus the status of wells in the adjacency, information

12To be sure, adjacencies of border plots will always be truncated. However, our average cadastral map has 881 plots
with only 102 (12%) being border plots.
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about the third layer might help predict the status of wells in the second layer, and so on. Under

unrestricted MPE play, therefore, investment decisions may depend on the state of the whole map, even

with well interference effects confined to adjacent plots.

To be precise, let CCPi(Xt) be a choice probability function for the owner of plot i and {CCP} be

the vector of choice probabilities of all plot owners in the cadastral map. Further, let one-period ahead

transition probabilities F̃ (Xt+1 | Xt) describe beliefs about the evolution of the state of the map and

F (Xt+1 | Xt; {CCP}) be the one-period-ahead law of motion for the state induced by the primitives of

the problem and {CCP}. We thus have:

Definition 1. An MPE is a vector of choice probabilities {CCP ∗
i (Xt) : i = 1, . . . , P} and beliefs F̃ ∗

such that: a) given F̃ ∗, CCP ∗
i is the solution of plot owner i’s dynamic game “against nature”; and b)

beliefs are correct, in that F̃ ∗(Xt+1 | Xt) = F (Xt+1 | Xt; {CCP}∗).

In general, each plot owner in their unique adjacency would have a different equilibrium CCP depending

on all primitives, including the structure of the map. Given the number of plots in the map, unrestricted

MPE play is not empirically feasible due to the high dimensionality of {Xt, {CCP}}.
As a tractable alternative, we consider a Markov equilibrium in which: i) CCPs depend only on the

state of the (1-level) adjacency (X(i1)t, nit), and ii) the plot owner has beliefs only about the stochastic

evolution of X(i1)t in steady state. While assumption i) avoids the “curse of dimensionality”, the fact

that well interference is limited to the adjacency should dampen the influences induced by unrestricted

play of plot owners in layers h > 1 as well as making it less plausible (i.e., by bounded rationality)

that plot owners would keep track of the full state of a large map. Assumption ii) is not only a natural

implication of assumption i), but it also adds the non-trivial requirement that equilibrium beliefs about

the state of the adjacency be correct when averaged over the map’s stochastic steady state. Thus, in

the spirit of an “oblivious equilibrium”,13,14 we propose

Definition 2. An Adjacency Equilibrium (AE) is a vector of choice probabilities {CCP ∗
i (X(i1)t, nit) :

i = 1, . . . , P} and of beliefs
{
F̃ ∗
i (X(i1)t+1 | X(i1)t, nit) : i = 1, . . . , P

}
such that: a) given beliefs F̃ ∗

i ,

CCP ∗
i is the solution of plot owner i’s dynamic game “against nature”; and b) beliefs are correct “on

average” in steady state. That is, let F∞(Xt; {CCP}) be the stationary joint distribution over the state

13Weintraub et al. (2008), Benkard et al. (2015) and Ifrach and Weintraub (2017) consider alternative “oblivious
equilibrium” concepts in the context of the Ericson and Pakes (1995) model of industry dynamics and show that they
closely approximate the corresponding MPE. While we expect similar approximation results to hold in our setting, we
leave this issue for future research.

14Hodgson (2021), building on the work of Fershtman and Pakes (2012) on games of asymmetric information, also uses
a reduced-state equilibrium concept to obtain a tractable empirical model of informational externalities in the context of
strategic oil field exploration.
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induced by the primitives and the vector of CCPs.15 Further, let F∞
i (X(i2)t | X(i1)t, nit; {CCP}) be the

conditional distribution implied by F∞(Xt; {CCP}). Then,

F̃ ∗
i (X(i1)t+1 = x(i1)t+1 | X(i1)t = x(i1)t, nit) = (11)∑

x(i2)t

F∞
i (x(i2)t | x(i1)t, nit; {CCP}∗)Fi(x(i1)t+1 | x(i1)t, x(i2)t, nit; {CCP}∗).

To understand how equation (11) constrains beliefs, note first that the evolution of the state of plot

j ∈ M(i1) between t and t+ 1 depends on CCP ∗
j at t. This investment decision rule depends, in turn,

upon the state of j’s adjacency at t, formed by plot j and all of its neighbors, including plot i. All of

the plots in j’s adjacency are in M(i1) and M(i2). Therefore, the state variables of plot owner j are

contained in {nit, X(i1)t, X(i2)t}. If the owner of plot i knew X(i2)t, they would thus be able to predict

their neighbor j’s behavior at t using CCP ∗
j and, together with other primitives such as the drilling

success and well failure processes, predict the stochastic evolution of the state of plot j which is the

second factor in each term of the summation in equation (11). An AE, however, assumes that X(i2)t in

not in plot owner i’s information set but that they form expectations about it using the (conditional)

steady state distribution F∞(X(i2)t | X(i1)t, nit; {CCP}∗) as probability weights on the RHS of equation

(11).16 Although each plot owner still has a unique CCP and set of beliefs, and the plot owners’ joint

decisions still depend on the entire cadastral map, the AE concept achieves considerable simplification.17

4 Structural Estimation

We now detail a tractable empirical structural model and a Simulated Method of Moments (SMM) pro-

cedure to estimate it. In addition to the four structural parameters Ω = (θ, α, δ, σ), Table 1 summarizes

the model primitives and how they are estimated.

15Since the state of the map is an irreducible and aperiodic Markov chain, a unique stationary distribution exists.
16In our empirical implementation, we do not use equation (11) directly but rather compute equilibrium beliefs using

“brute force” by simulating very long histories of investment, success, and failure events for every plot in each cadastral
map until a steady state is reached. We then use simulated histories to compute the requisite transition probabilities.

17Using Brouwer’s fixed point theorem, we can show that at least one AE exists. Multiplicity of equilibria, however,
cannot be ruled out. Xu (2018) establishes that, in a static version of a similar model, the best response operator has a
contraction property provided that the “strategic interaction parameter” is small enough. An extension of this result to
a dynamic setting is nontrivial and is left as a topic for future research.
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Table 1: Estimation roadmap

Symbol(s) Section/Table note
Estimated in 2nd stage:

Production function θ, α, δ 4.4, 4.5
Scale of drilling shock σ 4.4, 4.5
Fraction of developable plots Pr(D = 1) 4.1, 4.4, 4.5

Estimated in 1st stage:

Flow state probability functions π1, ..., π5 4.3/note 1
Failure probability function πF 4.3/note 1
Flow/fail heterogeneity high/low 4.3/note 2

Other primitives:

Unsuccessful drilling cost cd note 3
Successful drilling cost cs note 4
Pr(Good monsoon) ERt−1 note 5
Pr(Success|D = 1) πS 2.2/note 6
Discount factor β 4.1
Plot network (by map-village) {A,M} 2.2/note 7

Notes: (1) See also Appendix D for estimation details. Probability functions depend on
number of functioning borewells in adjacency and vary by mandal, monsoon rainfall and
unobserved type; (2) Probability of low flow type = 0.364, high flow type = 0.636; (3)
cd = 28, 800 Rs is median drilling cost (in 2017 Rs) across all borewells sunk since 2000;
(4) cs = 59, 800 Rs is median of sum of drilling, pipe, casing, and electrical connection
costs (in 2017 Rs) across all borewells sunk since 2000; (5) Good monsoon defined as
June-November rainfall in mandal above study area average (See Appendix Figure D.1);
(6) Observed drilling success per attempt = 0.375.; (7) At least one cadastral map per
mandal (two mandals have two maps each; see Appendix B).

4.1 Empirical specification

Unobserved heterogeneity We allow for two latent plot-specific factors. The first concerns the

presence/absence of water-bearing fissures in the hard-rock underlying the plot, the distribution of

which we approximate as binomial; i.e., plots are either “developable” (D = 1), in which case the model

of optimal annual drilling choice outlined in Section 3 applies, or not (D = 0), in which case our model

is irrelevant for that plot and there is never drilling on it. To pin down the fraction of developable

plots Pr(D = 1), we exploit the fraction of “active” plots (see Section 2.2) observed in our sample as

discussed below. The second latent factor applies only to developable plots and concerns heterogeneity

in groundwater availability. Section 4.3 discusses estimation of the discrete distribution of this latent

factor using well flow and failure data. We assume that each farmer knows their own plot’s types but
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observes neither the developable type nor the flow/failure type of the other plots in their adjacencies,

that these two latent factors are independent of one another, and that each is iid across plots.18

State space restrictions and observed types We assume that CCPs depend on reference plot

area a and on the number, but not on the areas, of adjacent plots. This restriction effectively reduces

X(i1)t to Nit =
∑

j∈M(i1)t
njt, yielding state space (Nit, nit). Given the one-to-one mapping between

CCPs, beliefs, and developable plot types, tractability considerations also dictate limiting the number

L of such types. Discretization of reference plot area into quintiles coupled with the number of adjacent

plots in the maps ranging from 1 to 7, yields 35 possible observed types, which, along with 2 unobserved

flow/fail types mentioned above, implies L = 70 for each of the 14 map villages.

Discount factor Given the challenge of identifying the discount factor in dynamic discrete choice

models (Rust 1994; Magnac and Thesmar 2002), we follow standard practice by fixing the value of β

in the SMM estimation. However, since our welfare calculations may be sensitive to this choice, we

calibrate β using data on land values. To do so, we first estimate the structural model at different

(fixed) values of β along a coarse grid. Next, we simulate from each of these estimated models in steady

state the average difference of the present discounted value per acre of active plots versus inactive

plots. Lastly, we compare this value differential to its empirical counterpart, which we estimate to be

around 80,000 Rs/acre (see Appendix F for details), and select the β that yields the closest match. This

procedure delivers a value of β = 0.95.

4.2 Solution algorithm

Given values of Ω, Pr(D = 1) and all the other primitives, we obtain an AE for each of the 14 cadastral

maps as follows:

Initialize the maps:

Step 1 Draw a Dj for each plot j from the binomial distribution with Pr(D = 1).

Step 2 Assign each plot with Dj = 1 an unobserved flow type ν1 or ν2, drawing from a binomial

distribution with probability of (low) type 1 = 0.364.19

18While positive spatial correlation in developable and flow/failure type is plausible, incorporating it is unlikely to
appreciably improve the fit of the structural model. Given this, along with the limited information about spatial correlation
in our data, as well as the additional complexity involved, we leave this refinement for future work.

19To ensure a unique AE despite the inherent randomness of a particular map draw in Steps 1 and 2, we repeat these
two steps ten times for each plot type and pool the resulting data in computing beliefs in Steps 4 and 5.

17



Step 3 Assign each plot an initial number (zero) of functioning borewells {nj0 : j = 1, . . . , P} and
an initial choice probability function (constant equal to 0.5) to each type {CCPl,0 : l = 1, . . . , L} .

Iterate on beliefs and CCPs:

Step 4 Given {CCPl,q−1 : l = 1, . . . , L} at iteration q = 1, 2, ..., simulate the time-series of well

drilling decisions, successes and (unobserved type-specific) failures in every plot on the map

until the steady state is reached. Simulate T = 150, 000 periods forward in steady state.

Step 5 From the steady state simulations, construct estimates of the one-period ahead state

transition matrices F (N ′|N , n) for each type, averaging across plots on the map of the same

type. Denote these estimates by F̂lq.

Step 6 Given beliefs F̂lq and primitives, use policy iteration to compute new CCP’s which solve

the plot owner’s game “against nature”. Upon convergence of policy iterations, obtain a

{CCPlq} satisfying the fixed point condition CCPlq = Ψ(CCPlk−1, F̂lk,Ω) for all types,

where Ψ is a policy iteration operator.

Convergence:

Step 7 If ∥CCPq − CCPq−1 ∥ is small enough, then stop. If not, then update q and return to

Step 5. If CCPs converge, so do beliefs, which are a continuous function of CCPs.

Steps 1-7 are nested within a routine for minimizing the SMM criterion function with respect to Ω and

Pr(D = 1) using a downhill simplex method.

4.3 First-stage: Estimating well interference effects

Appendix D lays out the panel data, econometric procedures, and results for our joint estimation of

the well flow and failure processes incorporating interference from neighboring borewells. We use the

2017 adjacency survey to construct a 2012-16 panel of borewells at risk of failure and we combine the

2010 and 2017 household surveys into a two-year borewell flow panel. We allow for the endogeneity of

neighboring borewells by letting their number be correlated with plot-specific unobserved heterogeneity

in groundwater availability, our second latent factor. A correlated random effects approach allows us

to recover predicted probability functions for use in the second-stage estimation (see Table 1). Because

adjacency survey respondents may recall the status of borewells belonging to their neighbors less accu-

rately than those on their own (reference) plots, our estimation procedure corrects for misclassification

error in the reported number of functioning wells on adjacent plots. Our estimates are also robust to

sample selection on the basis of unobserved plot-specific heterogeneity.
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Figure 4: Expected flow and failure probabilities
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Notes: Left panel: Expected well flow (
∑

k πkqk) as a function of N , the number of adjacent functioning wells,
by latent flow type and monsoon state. Right panel: Annual probability of well failure as a function of N
by latent flow type and monsoon state. Probability functions are predictions from the joint well flow/failure
estimation averaged over the 12 mandals.

We obtain an adequate fit with two unobserved plot types, low flow (high failure) with probability

0.364 and high flow (low failure) with probability 0.636. Figure 4 shows expected well flow
∑

k πkqk

(left panel) and the probability of well failure πF (right panel) against number of functioning wells

N , averaging across mandals for ease of presentation. While expected flow differs modestly between

high and low unobserved flow types, the marginal effect of N on expected flow (the intensive margin

externality) is virtually identical across types, whereas both the rate of well failure and the marginal

effect of N on failure (extensive margin externality) are much higher for the low flow than high flow

type. By contrast, an above average (“good”) monsoon substantially increases well flow but has a

negligible (and statistically insignificant) effect on failure.
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4.4 Second-stage: Moment conditions and identification

We match the observed annual drilling rates in the representative sample of plots by area quintile

ak and number of functioning borewells to their model-based counterparts.20 Since, by assumption,

no investment occurs once a plot has two borewells, we do not match drilling rates conditional on

n ≥ 2. Although we do not target moments involving the number of functioning borewells outside of

the reference plot (i.e., average drilling rates conditional on different values of N ), later we exploit the

partial correlation between drilling and N to validate the model. This correlation is not needed in our

second-stage because we estimate all parameters associated with well interference externalities in the

first-stage as previously discussed.

Identification of Ω may be thought of, heuristically, in terms of a static model wherein drilling

decisions are made once and for all, without borewell failure, and with the number of functioning

borewells on a reference plot taken as given. In this case (ignoring unobserved heterogeneity), we

have Pn,k ≡ Pr(d = 1|n, ak) = logit−1({θ[f(n + 1, ak;α, δ) − f(n, ak;α, δ)] − E c}/σ), where E c =

csπs + cd(1− πs) is the expected cost of drilling and f = 1
θ
E[y(N,R, n, ak;α, δ)] is expected (physical)

output on a plot of area ak with n functional borewells, where expectations are taken with respect to

flow outcomes, beliefs about the number of functioning borewells in other adjacency plots, and rainfall.

Given α and δ, the difference in drilling rates across any two (n, k) pairs with different expected

physical outputs identifies the ratio θ/σ.21 Since E c is a known constant, we can then back out σ,

and hence θ, from the average drilling rate at any (n, k). Given θ(α, δ) and σ(α, δ), the remaining

eight moment conditions yield more than enough equations to solve for α and δ. Intuitively, fixing ak,

differences in drilling rates at n = 1 and n = 0 capture diminishing returns to flow because, in log odds

form, log
P1,k(1−P0,k)

P0,k(1−P1,k)
= θ(α,δ)

σ(α,δ)
{[f(2, ak;α, δ)− f(1, ak;α, δ)]− [f(1, ak;α, δ)− 0]}. Likewise, now fixing n,

differences in drilling rates across area quintiles capture how the marginal product of flow varies with area

because log
Pn,k(1−Pn,k′ )

Pn,k′ (1−Pn,k)
= θ(α,δ)

σ(α,δ)
{[f(n+1, ak;α, δ)− f(n, ak;α, δ)]− [f(n+1, ak′ ;α, δ)− f(n, ak′ ;α, δ)]}.

Finally, to identify the fraction of latent developable plots Pr(D = 1), we simulate the active status

of a plot of each observed type using criteria analogous to those deployed in the actual data (Section

2.2); that is, we construct synthetic 5-year panels in steady state and assign an active status indicator

A equal to one if any drilling attempt occurs over the panel or if there is a functioning borewell in the

initial period. Averaging over plots of the same area type and over 5 simulated panels per type yields

the model-based moments Pr(A = 1|ak) that we match to those from the representative plot sample.

In all, we have 15 moment conditions and the SMM criterion function uses a diagonal weighting

20Model-based drilling rates are averages across the 14 map villages weighted by the proportion of total plot area in
the representative plot sample contributed by sample plots associated with that village.

21For instance, using differences in log odds ratios, we obtain θ/σ = log
P0,k(1−P0,k′ )

P0,k′ (1−P0,k)
[f(1, ak;α, δ)− f(1, ak′ ;α, δ)]−1.
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matrix consisting of the inverse of these moment variances.

4.5 Results and model validation

Table 2 reports the second-stage estimates along with their standard errors based on a 50 replication

bootstrap.22 We strongly reject a Cobb-Douglas production function (i.e., δ = 0) in favor of a CES.

Figures 5 and 6 show that our model matches the 15 targeted moments reasonably well. As a portman-

teau goodness-of-fit test, consider the functioning borewell density implied by the estimated model in

steady state, which comes to 0.214 wells per developable acre or 0.154 (= 0.214× 0.72) wells per total

acre, quite close to the 2012-16 average of 0.160 borewells per acre in our representative plot sample.

Table 2: Structural Parameter Estimates

θ α δ σ Pr(D = 1)
15.15 0.79 0.40 1.14 0.72
(0.44) (0.02) (0.05) (0.2) (0.02)

Notes: Bootstrapped standard errors in parentheses. See equation (1) for definition
of production function parameters (θ, α, δ); σ is scale of drilling shock.

By way of validation, we simulate data from the estimated model to compute the partial correlation,

β1, between dit and Nit and compare it to its actual data counterpart reported in Appendix E.1.

Note that this “reduced-form” parameter captures the strength of strategic substitutability between

neighbors’ drilling decisions. Starting at a steady state on each of 10 replications of the cadastral

village maps, we simulate five-year panels consisting of triplets {dit, nit,Nit : t = 1, ..., 5} for every plot

on the map that is assigned developed status (see Step 2 in Subsection 5.3); this yields 61,695 5-year

panels in total. Using this very large synthetic data “sample”, we estimate a linear probability drilling

model with reference plot fixed effects using only observations with n < 2, i.e., the cases when drilling

is theoretically possible. This procedure delivers essentially a “population” value of β1 from the model.

Figure 7 shows the bootstrap distribution of β̂1 based on the actual data (corresponding to column 5 of

Appendix Table E.1) with the 95% confidence interval marked by the vertical green lines. Corroborating

the model, we find that the “population” value of β1 implied by the estimated structural parameters

(vertical red line) lies well within the confidence interval.

22These standard errors are understated as they do not account for pre-estimated first stage parameters. Given the
high precision, however, any correction for first stage sampling error is unlikely to matter for inference.
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Figure 5: Annual drilling rates by plot area quintile and n

Data

Model

Notes: Each pair of bars represents a data moment (annual drilling rate by plot area quintile and
number of functioning wells on the reference plot) and its corresponding model fit.

Figure 6: Probability of developable plot by area quintile

Data

Model

Notes: Each pair of bars represents a data moment (probability of having at least one functioning
borewell or drilling attempt in a 5-year period by plot area quintile ) and its corresponding model fit.
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Figure 7: Strategic interactions – data vs. model
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Notes: Estimate of strategic interaction parameter β1 (vertical blue line) and its boot-
strapped distribution from a linear fixed-effects regression of a drilling indicator on the
number of functioning wells outside the reference plot (column 5 of Appendix Table E.1).

Vertical green lines denote 95% confidence interval bounds for β̂1. Vertical red line denotes
the “population” value of β1 based on model-generated data.
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5 Counterfactuals

Our quantitative policy evaluation addresses three questions: (1) What is the social cost of the current

policy of free (but rationed) electricity to farmers for pumping groundwater? (2) What is the optimal

tax on borewells that eliminates the deadweight loss of electricity subsidies and of the well interference

externality? (3) How would the burden of borewell taxation be distributed across landowners?

5.1 Social value of groundwater development

Based on our estimates, the (marginal) private value of developable land is 35,200 Rs/acre.23,24 The

social value of groundwater development, however, is this private value minus the cost of electricity,

which, though given free to borewell owners, is not free to society. In particular, the steady-state fiscal

cost of the electricity subsidy in present value terms is 36,400 Rs/acre = 0.214 borewells per acre ×
8,500/0.05, where the second term is the annual cost of electricity to run a pump given daily power

rationing (Appendix A) divided by the annual discount rate. We, therefore, find that the social value

of groundwater development is essentially zero (indeed, slightly negative!) with the entire private value

accounted for by the capitalized electricity subsidy.

Table 3: Electricity Cost Recovery Counterfactuals

Network economy Island economy

Baseline Cost-recovery Baseline Cost-recovery

Borewells density (wells/acre) 0.214 0.064 0.296 0.115
Fiscal cost of subsidy (’000 Rs/acre) 36.4 0.0 50.3 0.0
Social value of GW (’000 Rs/acre) -1.2 9.8 13.2 18.7
Deadweight loss (’000 Rs/acre) 11.0 5.5
DWL/Fiscal cost of subsidy 0.30 0.11

To assess the importance of the externality, we compute the village map equilibria in a counterfactual

“island” economy that ignores well interference effects. As shown in Table 3, compared to the baseline

“network” economy considered in the previous paragraph, we find that the steady state borewell density

in the baseline “island” economy increases by 38 percent (from 0.214 to 0.296 wells/acre) and that the

23This is the average expected discounted present value of agricultural output minus drilling costs in steady state across
all maps weighted by the proportion of total acreage from the map village represented in the sample. Undevelopable
land has zero private value by assumption (our normalization). To be clear, the private value accounts for externalities
inasmuch as it averages across hundreds of adjacent plots with (potentially) mutually interfering borewells.

24This marginal value of developable land is much lower than the marginal value of active land, which we estimated at
80,000 Rs/acre, because the proportion of developable plots (0.72) is much higher than that of active plots (0.39).
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social value of groundwater development rises from -1,200 to 13,200 Rs/acre (private value rises from

35,200 to 63,500 Rs/acre). Thus, absent the negative externality, rent-seeking in the form of drilling

for subsidies would not entirely dissipate the value of groundwater to society.

5.2 Policy analysis

We turn next to the social welfare implications of an annual tax τ on functioning borewells. In practice,

τ could be implemented as a flat charge for maintaining an agricultural electrical connection. Setting τ

for all functioning borewells equal to the annual cost of electricity (i.e., τe =8,500 Rs/year) would fully

recover costs from agricultural consumers. A flat charge exceeding τe would act, at the margin, like a

Pigouvian tax on borewells.25

We compute social welfare along the entire transition path from the zero tax baseline to the given

counterfactual tax (see Appendix G for details on the equilibrium concept and solution algorithm). As

in, e.g., Domeij and Heathcote (2004), this calculation takes into account the “short-run”, over which

the existing stock of borewells is relevant. We assume that extant borewells that become unprofitable

are dismantled at zero cost.26

Electricity cost recovery Arguing that charging farmers by electricity usage is impractical in India,

Shah et al. (2007) propose flat-fee power pricing combined with quantity rationing (the latter discussed

by Ryan and Sudarshan 2022). Implementing this policy with an annual tax τ = τe on all functioning

borewells would increase the social value of groundwater development from -1,200 to 9,800 Rs/acre.

The deadweight loss from free electricity provision is thus 11,000 Rs (170 US$) per developable acre in

present value terms, which is 30% of the fiscal cost of the subsidy (see Table 3). In other words, three

in ten rupees transferred in-kind to farmers in the form of electricity is lost through over-drilling. By

contrast, in the absence of well interference, as represented by our island economy, the fiscal cost of the

subsidy is 38% higher (simply reflecting the higher equilibrium well density) but the deadweight loss is

only half as large as in the network economy. Thus, the presence of externalities nearly triples the ratio

of deadweight loss to fiscal cost, exacerbating the leaky bucket of free electricity provision.

25In terms of the model, the annual net value of output in Rs under a counterfactual tax τ > 0 becomes E y− τn. Once
a borewell fails, its owner incurs no further tax on it.

26Although our structural model does not explicitly incorporate dismantling (which would never be chosen anyway),
our counterfactuals still treat this decision as the outcome of a strategic equilibrium (Appendix G). In particular, we
assume that once a tax is implemented, borewell owners adopt beliefs (one-period ahead state transition probabilities)
consistent with the transition to the new steady state under the counterfactual policy. Thus, in making their dismantling
decision, each borewell owner takes into account the dismantling done by other borewell owners in their own adjacency.

25



Figure 8: Welfare and wells under alternative borewell taxes
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Notes: In the left panel, each point on the solid (dashed) curve represents the social (private) per acre
value of developable land, or welfare, along the transition path from the benchmark zero-tax economy
to the long-run steady state under alternative hypothetical annual taxes on borewells: τe = 8.5 is the
tax that recovers electricity costs; τ∗ = 10.0 is the optimal tax. In the right panel, each point on the
curve represents the wells per acre in the the long-run steady state under alternative borewell taxes.

Optimal borewell taxation To correct the negative externality, the social welfare maximizing tax

τ ∗ must exceed the annual cost of electricity τe.
27 In the left panel of Figure 8, we plot (solid curve) the

social value of groundwater development at different levels of the borewell tax and find the optimum

at τ ∗ = 10, 000 Rs, about 18% higher than τe. Nevertheless, there is little difference in social value

between a tax of 8,500 Rs and one of 10,000 Rs, and only a small absolute difference in equilibrium

borewell density (right panel). Once electricity is provided to farmers at cost, thereby reducing borewell

density by 70%, the marginal externality cost is rather small.

Distributional implications of borewell taxation Although the existing stock of capital can

be safely ignored when considering the long-run effects of policy, short-run considerations are often

paramount in practical policy discussions. Incorporating the short-run, as we do in this paper by

accounting for transitional dynamics, allows us to understand how the burden of borewell taxation is

distributed across landowners. At each counterfactual tax τ , Figure 9 shows the average private value

of groundwater development per acre by the number of functioning borewells on the plot (n) before the

27Optimality of a centralized Pigouvian tax presupposes that landowners cannot restrain socially undesirable drilling
through side-payments to neighbors. Aside from enforcement issues, one argument against this Coaseian solution in our
setting is the complex, multi-lateral, negotiations it would require across the entire network of agricultural plots.

26



Figure 9: Private value by initial number of functioning borewells
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Notes: Each point represents the private welfare along the transition path from the benchmark zero-tax
economy to the long-run steady state under a hypothetical tax on borewells for different values of n at
the time the policy is introduced: τe = 8.5 is the tax that recovers electricity costs; τ∗ = 10.0 is the
optimal tax.

introduction of the policy. The (dashed) private value curve in the left panel of Figure 8 is a weighted

average of these three conditional curves. Note that taxing borewells, regardless of τ , has practically

zero impact on plots with no functioning borewells today because the option value of future drilling is

minimal; these developable plots are heavily selected to be of the low flow/high failure type.

Turn now to the cost-recovery tax τe. Table 4 displays the private value of (developable) plots with

0, 1, and 2 functioning borewells at baseline and, respectively, under this counterfactual. As noted

above, the welfare loss for n = 0 plots is negligible, whereas owners of n = 1 plots lose 129,000 Rs and

owners of n = 2 plots lose 212,000 Rs. There is considerable plot type heterogeneity within each of

the n = 0, 1, 2 groups, which is costly (if not impossible, in the case of the two latent factors) for the

policy-maker to observe. By contrast, n is observable because a functioning borewell requires a working

electrical connection. Our analysis thus suggests the contours of a practical compensation scheme to

mitigate political opposition to electricity cost recovery. Farmers would receive 120,000 Rs per existing

agricultural connection upfront if they agree to pay τe annually as long as their connection is active;

those who successfully drill and establish a connection ex-post would not be compensated.28 The last

28Put in context, this per borewell payment is slightly higher than the expected cost of drilling a successful borewell

(cs +
1− πS

πS
cd = 107, 800 Rs) and 20% of the price of the median plot of land.
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column of Table 4 shows relatively small welfare losses or even gains under this compensation formula.

Moreover, the ratio of compensation to fiscal cost of the subsidy is only 0.71 (= 120/(8.5/.05)), so the

government would save nearly 30% on its budget for electricity provision while leaving farmers largely

whole. Although this result essentially restates our earlier finding that the deadweight loss from free

electricity is 30% of the fiscal cost, the efficacy of a compensation scheme based on n alone is surprising.

Table 4: Compensation Scheme for Electricity Cost Recovery

Private value
Plot type Baseline Cost-recovery ∆ Compensation Net welfare

n = 0 2.1 0.1 -2.0 0 -2.0
n = 1 178.6 48.3 -129.3 120.0 -9.3
n = 2 305.3 93.1 -212.2 240.0 27.8

Notes: All figures are in thousands of Rs per plot.

6 Conclusion

We set out to assess the social cost of a policy of free electricity to farmers for groundwater pumping

in South India, a context with economically important yet highly localized externalities. To do so,

we developed a tractable dynamic strategic equilibrium model of borewell investment across a large

network of heterogeneous agricultural plots along with a novel simulation-based estimation strategy,

one potentially applicable to a wide range of settings beyond that of concern in this paper.

Despite daily power rationing that obviates over-pumping (as per Ryan and Sudarshan 2022), once

the extensive margin and drilling costs are taken into account, we find that subsidizing electricity is a

rather inefficient means of transferring resources to farmers; nearly a third of the transfer value is wasted

through over-drilling of borewells, a distortion greatly exacerbated by well interference. While the

optimal Pigouvian tax on borewells exceeds the annual cost of electricity by 18%, the marginal social gain

from such a tax beyond that required for cost-recovery is minimal, reflecting the extensive dismantling

of unproductive borewells and choking-off of drilling that cost-recovery would entail. Finally, although

charging fully for electricity would have substantial short-run distributional implications, these could

largely be ameliorated through a (practical) compensation scheme.

A limitation of our methodology is that it relies on a steady state assumption; it may, therefore, not

carry over to settings in which water tables are undergoing significant decline, as in much of northwest

India. Adapting our approach to these circumstances would be a fruitful area of future research.
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A Average annual electricity costs per borewell

The electricity cost of a borewell per year is the product of (1) power consumption of the average pump

of 6 horsepower (HP), which is 4.5 kWh (= 6 HP×0.746 kWh/HP), (2) 630 annual hours of pumping

(average of unit record data for our 12 sample mandals from India’s 4th Minor Irrigation Census), and

(3) marginal cost of electricity of 3 Rs/kWh (Gulati and Pahuja, 2012). All three components in this

calculation are likely overly conservative estimates, so that 8500 Rs. should be viewed as a lower bound

on the true electricity cost.

B Cadastral map villages

The villages for which we have cadastral maps are Pamireddypalli in Atmakur mandal, Dharmapur and

Ramachandrapuram in Mahabubnagar mandal, Jajapur in Narayanapet and Thipparasipalli in Utkur

madal. In Anatapur district, we have cadastral maps for Manesamudram in Hindupur mandal, M.

Venkata Puram and Manepalli, both part of the same panchayat in Lepakshi mandal, Y.B. Halli in

Madakasira Muddireddy Palli in Parigi Chalakuru and Somandepalli, both part of the same panchayat

in Somandepalli mandal, Siddarampuram and Reddipalli in B.K. Samudram mandal, Itukalapalli in

Anantapur and Ayyavaripalli in Rapthadu mandal.

We take these maps to be representative of all villages for which we have data in each respective

mandal. We use the digitized maps, as in the example shown in Figure B.1, to create 14 plot adjacency

matrices defining the networks upon which the dynamic discrete investment game is played.
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Figure B.1: Village Muddiredipalle

(a) Original Cadastral Map

(b) Digitized Cadastral Map
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C Wealth, liquidity and drilling

Using the 2010 household survey, we compute the total value of household assets in 2009, including

agricultural land, livestock, agricultural machinery, household durable goods, and savings in the form

of bank deposits, cash and jewelry. Gross wealth should be a good proxy for liquidity and thus allows

us to test for the importance of financial constraints on well-drilling. Table C.1 presents estimates of

the determinants of drilling attempts using the 2012-16 representative plot panel. Columns 1-3 report

linear probability models with standard errors clustered at the plot level whereas columns 4-6 report

plot-level random effects logit models. Inferences about the association between pre-sample wealth and

drilling over the 5-year panel from the two sets of estimates are virtually identical.

In column 1 (and 4), which includes only mandal dummies as additional controls, we see that

wealthier households (in 2009) are significantly more likely to drill during 2012-2016. However, once

we also control for plot size with area quintile dummies (cols. 2 and 5), this effect largely disappears.

Evidently, wealth and plot area are positively correlated and there is a greater incentive to drill on

larger plots. Finally, in column 3 (and 6), we control for the initial number of functioning borewells on

the plot entering the panel period, which further attenuates the wealth effect toward zero. Admittedly,

these liquidity effects, or lack thereof, are associations, i.e., not necessarily causal. For example, despite

controlling for initial borewells, unobserved (to us) suitability for groundwater development (and thus

drilling) may have augmented pre-sample wealth through past groundwater use. Such correlations,

however, would bias liquidity effects away from zero, contrary to what we find in Table C.1.

Further, according to our 2017 survey of borewell owners, only 27% of respondents relied on their

own savings as the main source of finance for the largest components of the cost of borewell investment,

drilling the bore and purchase of the submersible pump. Most farmers use various forms of formal and

informal credit. More broadly, data from the household credit module contained in the 2010 household

survey show that, out of the 1488 respondents, 89% had outstanding bank credit, 46% had loans from

family or friends, and 45% were borrowing from moneylenders. These percentages are very similar across

households that have at least one borewell on their land and those that have none. This substantial credit

access in our setting may explain why pre-sample wealth is uncorrelated with subsequent drilling and

provides empirical justification for a borewell investment model that abstracts from financial frictions.
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Table C.1: Determinants of drilling

LPM RE Logit

(1) (2) (3) (4) (5) (6)

Log(gross wealth 2009) 0.00531*** 0.00236 0.00130 0.161*** 0.0701 0.0379
(0.00189) (0.00193) (0.00191) (0.0578) (0.0622) (0.0622)

Plot area quintile (1st omitted):

2nd — 0.0110** 0.00960** — 0.563*** 0.519***
(0.00442) (0.00444) (0.197) (0.197)

3rd — 0.0210*** 0.0185*** — 0.847*** 0.768***
(0.00556) (0.00551) (0.203) (0.203)

4th — 0.0222*** 0.0199*** — 0.877*** 0.808***
(0.00518) (0.00520) (0.195) (0.194)

5th — 0.0284*** 0.0234*** — 1.024*** 0.904***
(0.00645) (0.00655) (0.213) (0.213)

Initial borewells (0 omitted):

1 — — 0.0197*** — — 0.549***
(0.00471) (0.117)

2 — — 0.0433*** — — 0.859***
(0.0125) (0.189)

Observations 14,310 14,310 14,310 14,310 14,310 14,310
Plots 2,862 2,862 2,862 2,862 2,862 2,862

Notes: Standard errors in parentheses (*** p < 0.01, ** p < 0.05, * p < 0.10), clustered at plot-level (columns 1-

3). Column 1-3 use a linear probability model; columns 4-6 use plot-level random effects logit MLE. Dependent

variable is whether a drilling attempt was made on plot during the year (from 2012-16). Each regression also

controls for mandal dummies (coefficients not reported).
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D First-stage estimation details

D.1 Data

Borewell failure panel To estimate the annual probability of well failure, we use the adjacency

survey to construct a 2012-16 panel of reference plot borewells that are at risk of failure. Wells enter

the failure panel in the year after they are sunk; we drop those sunk in 2016 because they would not

be at risk of failure until 2017. Since failure is an absorbing state, a well exits the panel in the year

following its failure. For reasons to be discussed, when the reference plot has multiple functioning wells

we only include in the panel the oldest, i.e., the first well sunk. The result is an unbalanced failure

panel of 697 borewells over a maximum of five years; 320 of the 1,057 adjacencies do not contribute to

the panel as they have no functioning borewells on the reference plot over the sample period. Of the

606 borewells that were functional going into 2012, about a third (195) had failed by 2016 leading to

an average annual failure rate of 7.3% (see Table D.1).

Table D.1: Well Failure by Year

Year Functional Failed Total

2012 559 47 606
(92.2) (7.8) (100)

2013 556 41 597
(93.1) (6.9) (100)

2014 527 53 580
(90.9) (9.1) (100)

2015 512 33 545
(93.9) (6.1) (100)

2016 489 34 523
(93.5) (6.5) (100)

Total 2,643 208 2,851
(92.7) (7.3) (100)

Notes: Percent of yearly total in
parentheses. Sample consists of
reference plot borewells subject
to failure in each year.

A key issue in modelling well failure is duration dependence, as the probability of failure depends on

the age of the well. If water tables were trending downward, then older and thus shallower wells would

dry up first. With a non-constant hazard rate of well failure, farmers would profitably take into account

not only the number of adjacent functioning borewells but also their ages, increasing the state space

and thus introducing considerable complexity into the structural model. While Figure 1 suggests that
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water tables in our setting have been fairly stable over the last two decades, we assess the importance of

duration dependence by focusing on extant borewells in 2012, when they had a median age of 12 years.

A simple test of duration dependence in well failure that avoids the intricate specification issues of

duration modelling is to check whether the probability of failure between 2012-16 is related to well age

in 2012, which is predetermined. The results in Table D.2 indicate significant duration dependence.

The marginal effect from the column 1 estimates implies that a well that was 10 years older in 2012

has a failure rate 0.092 higher over the subsequent five years. All of this effect, however, appears to be

concentrated among the 59 wells, fewer than 10% of the sample, that were more than 20 years old in

2012 (see, especially, column 3). For investment planning purposes, then, and given discounting, it is

reasonable to assume that farmers view the well failure hazard as essentially constant.

Table D.2: Well Age and Subsequent Failure

(1) (2) (3)

Age in 2012 0.0428*** — —
(0.0130)

Age×1Age≤10 — 0.00545 —
(0.0319)

(Age-10)×110<Age≤20 — 0.0375 —
(0.0372)

Age×1Age≤20 — — 0.0165
(0.0169)

(Age-20)×120<Age — 0.125*** 0.132***
(0.0456) (0.0466)

Observations 606 606 606
log-likelihood -375.0 -375.3 -375.5
Equal slopes test (p-value) − 0.028 0.006
Notes: Standard errors in parentheses (*** p < 0.01, ** p < 0.05, * p <

0.10). Dependent variable is indicator for whether well failed between 2012-16.

Estimation is by ML logit. Constant term not reported. Test of equal slopes

compares spline coefficients (3 in column 2 and 2 in column 3).

Borewell flow panel Data on discharge (well flow) were collected in the 2010 survey from all func-

tioning borewells for the 2009-10 rabi season and, in the 2017 survey, for the 2016-17 rabi season.

Farmers were asked to assess flow at both the beginning and end of the rabi season based on the frac-

tion of the outlet pipe that was full when pumping water (see Giné and Jacoby 2020). The flow measure

thus varies between (“minimal” coded as) 0.1 and (“full” coded as) 1.0, with one-quarter, one-half, and
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three-quarters flow in between. Reflecting the cyclicality of water tables during the rabi season dis-

cussed in Section 2, average flow assessments in 2016-17 (2009-10) fall from 0.84 (0.62) at the start of

rabi to 0.57 (0.35) at the end. We focus here on end-of-season flows, since well interference becomes

more salient as the local aquifer is drawn down.

Table D.3: End-of-Season Well Flow

Frequency (%)

Flow 2010 2017

0.10 32 114
(6.2) (22.2)

0.25 57 219
(11.1) (42.6)

0.50 172 143
(33.5) (27.8)

0.75 192 35
(37.4) (6.8)

1.00 61 3
(11.9) (0.6)

Total 514 514
(100) (100)

Mean 0.600 0.325
Std. dev. 0.245 0.193

To estimate flow probabilities, we construct a balanced 2-year panel of 514 functioning wells present

in both the 2010 and 2017 household/plot surveys. We find that average end-of-season flow declined in

the panel by almost half from 2010 to 2017 (see Table D.3), which may be attributable to differences

in the respective monsoons. Rainfall in our study areas during the 2016 monsoon season (responsible

for rabi 2016-2017 recharge) fell roughly 30% short of that in 2009 (see Figure A.1 for details.)

D.2 Econometric issues

Unobserved heterogeneity We allow for time invariant unobserved heterogeneity by specifying the

probability of an outcome as a function of an index zit for plot i in period (year) t as

zit = νi + β0 + β1Nit + β2Rmt−1 + εit, (D.1)

where νi is a random effect, Nit is the number of functioning wells in the adjacency at the beginning of

the period, and Rmt−1 is a dummy variable that takes a value of one if monsoon rainfall in mandal m
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Figure D.1: Monsoon rainfall at mandal level by year
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Source: For mandals in AP, the Andhra Pradesh Development Planning Society under the Planning
Department of the Government of AP. For mandals in Telangana, the Telangana State Development
Planning Society under the Planning Department of the Government of Telangana.

in year t− 1 (the past monsoon) exceeds the 2009-17 average for the 12-mandal study area as a whole.

The time-varying error εit is assumed iid logistic.

A key concern is that νi may be correlated with (Nit, Rmt−1). Since nonlinear probability models

do not lend themselves to fixed effects approaches (except in some special cases), we employ correlated

random effects (CRE) under the assumption that Nit and Rmt−1 are strictly exogenous conditional on

νi (see, e.g., Wooldridge 2010). In particular, let

νi = γ1N̄i + γ2R̄m + µi, (D.2)

where bars denote reference plot-specific means of the corresponding explanatory variable and µi is a

continuously distributed mean zero random effect. Substituting into (D.1) yields

zit = µi + β0 + β1Nit + β2Rmt−1 + γ1N̄i + γ2R̄m + εit, (D.3)

which is the index function that we use in our estimations below.

40



Selection bias Our estimation sample for the flow/failure model is selected on the basis of whether at

least one borewell was successfully sunk on the plot prior to or (in the case of failure) during the panel

period. Since the presence of a functioning borewell on a plot could be correlated with the unobserved

heterogeneity driving borewell flow and/or failure on that plot, selection bias is a concern. However,

insofar as εit is iid over time, and given that entry into the failure panel begins at least a “year” after the

borewell is sunk (see Figure 2), this sample selection is strictly exogeneous; in other words, conditional

on νi, selection is uncorrelated with idiosyncratic flow/failure shocks over the panel period. In these

circumstances, the nonlinear CRE estimator is robust to selection bias (Wooldridge 2019).

Misclassification error It is plausible to expect adjacency survey respondents to recall the func-

tioning status of borewells on their neighbors’ plots less accurately than those on their own (reference)

plots. We thus allow Nit, but not nit, to be subject to recall error.1 To handle this, we assume, also

quite plausibly, that the number of existing neighboring wells NE
it is accurately observed. We want to

estimate the probability that some outcome Yit depends upon the true number of functioning wells in

the adjacency Pr(Yit|Nit). Although Nit is not perfectly observed, we know that

Pr(Yit|NE
it ) =

NE
it∑

k=1

Pr(Yit|k)Pr(k|NE
it ), (D.4)

where Pr(k|NE
it ) is the discrete probability density of the true number of functioning wells outside of

the reference plot. This density is of the binomial form

Pr(k|NE
it ) =

NE
it !

k!(NE
it − k)!

pN
E
it −k(1− p)k, (D.5)

where p is the underlying annual probability of well failure.2 The misclassification error model (MEM)

estimator then assumes that the likelihood contribution conditional on unobservable µ is

ℓyi (µ) =
T∏
t=1

NE
it∑

k=1

Pr(Yit|zit(k, µ))Pr(k|NE
it , p̂). (D.6)

1While there has been recent progress in the econometrics literature on models of misclassification (e.g., Mahajan
2006; Hu 2008), no tractable general approaches exist applicable to our specific situation.

2More precisely, p should be thought of the average failure rate of borewells in the adjacency of reference plot i,
excluding those on the reference plot itself. We show empirically below that p is a function of the number of functioning
borewells in the relevant neighborhood. In the context of equation (D.4), the relevant neighborhood is that around each
of the plots adjacent to the reference plot, about which we have no adjacency-level data. Given this, we approximate p
using the district average of the actual failure rate, yielding p̂ = 0.104 for Anantapur and p̂ = 0.052 for Mahabubnagar.
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D.3 A joint model of well flow and failure

The well flow and failure panels cover 382 and 697 adjacencies, respectively, of which 360 overlap,

i.e., include wells with both flow and failure observations.3 This overlap allows identification of the

correlation in reference plot-level unobserved heterogeneity between the well flow and failure processes.

Such correlation is plausible if well failure is seen as a state of zero flow forever.

We discuss the likelihood contribution of each process in turn and then derive the joint flow-failure

likelihood.

Flow To estimate the probabilities for the five well-flow states (q = 0.1, 0.25, 0.5, 0.75, 1.0), we use a

CRE ordered logit for the two-year panel. The conditional likelihood contribution of reference plot i is

ℓfi (µ) =
∏
t

5∏
m=1

(
1

1 + ecm+1+zfit(µ)
− 1

1 + ecm+zfit(µ)

)
1Qit=m

(D.7)

where zfit(µ) is a linear index for flow as in equation (D.3), Qit is a 5-valued flow-state indicator and the

cm are cutoff parameters with c1 = −∞ and c6 = ∞.4

Failure For reasons already noted, we adopt a constant failure hazard specification, using the sequen-

tial logit as in Cameron and Heckman (1998), among others. The conditional likelihood contribution

with Nit subject to misclassification error is

ℓFi (ξ) =

Ti∏
t=τi

NE
it∑

k=1

ez
F
it(k,ξ)·Fit

1 + ez
F
it(k,ξ)

· Pr(k|NE
it , p̂), (D.8)

where zFit (ξ) is a linear index for failure, Fit is a binary failure indicator, τi is the year that the borewell

first enters the panel (or 2012, whichever comes last), Ti is the last year the borewell exists in the panel

(or 2016, whichever comes first), and ξ is the unobserved heterogeneity in well failure. For reference

plots with multiple wells, only the first one sunk is included in the failure panel. Allowing multiple

3Non-overlap occurs because flow data were collected on all borewells owned by the household, irrespective of their
inclusion in the adjacency survey, and because there are adjacencies that did not have functioning wells on the reference
plot in 2010 and 2017, when flow data were collected.

4Our measure of the number of neighboring borewells differs between flow and failure estimation datasets. In the
former case, owners of functioning wells were asked about the number of functioning borewells within a 100 meters radius
of the reference plot, which is not precisely the same as the number in the adjacency. In practice, however, the total
number of borewells within 100 meters averages 2.40 as compared to 2.36 in the average agency (for the 588 reference
plots with both measures available). Since the Nit used in the flow estimation is the contemporaneous (rather than
retrospective) report of the respondent, we assume no misclassification error in (D.7).
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borewells on a plot would lead to a violation of strict exogeneity due to correlation between Nit and the

failure shock.

The joint model For the joint flow/failure estimation, we follow, e.g., Eckstein and Wolpin (1999) in

assuming that the reference plot level random effects, µ and ξ, are linearly related, i.e., ξ = κµ, where

κ is a covariance parameter. Defining three indicator variables, D1
i , D

2
i , D

3
i for whether reference plot i

contributes, respectively, only flow data, only failure data, or both flow and failure data, and assuming

that µ is normally distributed with variance σ2
µ, the full log-likelihood is

L =
∑
i

log

{∫
µ

ℓi(µ, κµ)dΦ(
µ

σµ

)

}
, (D.9)

where

ℓi(µ, ξ) =
[
ℓfi (µ)

]D1
i [
ℓFi (ξ)

]D2
i

[
ℓfi (µ)ℓ

F
i (ξ)

]D3
i

. (D.10)

We use 10-point Gauss-Hermite quadrature to integrate out the continuous random effect µ.5

To estimate the probabilities of the five well flow states, πk(N,R, νf ), and the failure probability,

πF (N,R, νF ), where νf and νF are, respectively, the flow and failure unobserved heterogeneity uncon-

ditional on the CRE covariates (N̄i, R̄m) , we proceed in four steps:

Step 1: Maximize the CRE likelihood given by equation (D.9) and obtain estimates of the linear index

coefficients β̂f , γ̂f , β̂F , and γ̂F (see equation D.3).

Step 2: Set βf = β̂f , βF = β̂F , γf = γF = 0, and re-maximize the likelihood with respect to the

unconditional heterogeneity distribution parameters σν =
√

var(νf ) and κν = cov(νf , νF )/σ2
ν .

Step 3: Test H0 : σν = κν = 0.6 If reject, go to Step 4. Otherwise, set νf = νF = 0.

Step 4: Estimate a discrete joint distribution of (νf , νF ) adding points of support j = 1, ..., J until the

likelihood fails to improve. Compute πk(N,R, νf
j ) and πF (N,R, νF

j ) for each j.

The top panel of Table D.4 reports the coefficient estimates from Step 1. Column 1 ignores mis-

classification error, column 2 corrects for misclassification error using the MEM approach, and column

5Compared to a discrete distribution, a continuous distribution of the random effect is easier to estimate and more
conducive to hypothesis testing. However, since the structural model requires discrete types, we estimate a discrete
heterogeneity distribution in our final specification (see Step 4 below).

6The p-values should account for testing on the boundary of the parameter space and for κν not being identified under
the null. Following Stata’s advice for such scenarios (see “help j mixedlr” and citations therein), we use a conventional
chi-square statistic to obtain a conservative p-value.
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Table D.4: Joint Flow-Failure CRE Estimation

Step 1 (1) (2) (3)

Flow:

log(N) -0.849 -0.858 -0.884
(0.171) (0.172) (0.172)

Good monsoon 1.766 1.782 1.917
(0.800) (0.802) (0.804)

Failure:

log(N) 0.052 1.842 1.163
(0.635) (0.560) (0.473)

Good monsoon 0.119 0.127 -0.258
(0.211) (0.222) (0.259)

Mandal dummies NO NO YES
Estimation method CRE CRE-MEM CRE-MEM

Log-likelihood -2,246.71 -2,240.36 -2,163.23

Step 2

σν 1.289 1.390 0.311
(0.093) (0.112) (0.136)

κν 0.059 -1.864 -4.676
(0.205) (0.237) (2.220)

ρν 0.024 -0.498 -0.106
(0.084) (0.029) (0.045)

Log-likelihood -2404 -2481 -2247
p-value (H0 : No het.) 0.000 0.000 0.000

Notes: Standard errors in parentheses. Maximum likelihood estimates

with reference plot-level correlated random effects (CRE). Ordered

logit cutoffs for flow, constant term for failure, and CRE covariate

coefficients for both equations, not reported. Sample size = 3,401. σν

is standard deviation of (unconditional) unobserved heterogeneity; κν

is flow-failure covariance of same; ρν = corr(νf + εf , νF + εF ) is full

cross-equation error correlation.

3 adds mandal dummies to the column 2 specification. Corroborating the well interference externality,

we find that having more borewells in an adjacency depresses flow and makes failure of the reference

well more likely. This latter effect, however, only emerges with the MEM estimation in columns 2 and

3. Also, having had a good previous monsoon improves well flow but does not have a significant effect

on failure, consistent with our interpretation of well failure as an absorbing state, independent of the

vagaries of the monsoon. Including mandal dummies (in both flow and failure indices) shrinks the

estimated scale of unobserved heterogeneity σν from 1.39 to 0.31. Lastly, only the MEM specifications
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in columns 2 and 3 show the expected negative correlation between flow and failure heterogeneity and,

in both specifications, we strongly reject the null of no unobserved heterogeneity (Step 3).

Moving to Step 4, we redo Step 2 allowing for 2 discrete types, obtaining a log-likelihood value of

-2245.59 (compared to -2246.55 in column 3 of Table D.4). Since adding a third type does not lead

to an appreciable improvement in the likelihood, we stop at J = 2 and compute the flow and failure

probabilities, the results of which calculation are displayed in Figure 4 in the main text.

Robustness Instead of a random effects ordered logit for the five flow states, we now run a linear

regression with reference plot fixed effects, where the dependent variable takes on values from 1 to 5

(col. 1 of Table D.5). Since log(N) in this case is not subject to recall error, we do not instrument it.

In the case of failure, we estimate a linear probability model with reference plot fixed effects (col. 2)

and by FE-IV (col. 3) using log(NE + n) as an instrument for log(N + n). Estimation samples for the

separate flow and failure models are identical to those used in the joint nonlinear estimation as reported

in Table D.4. Results for the two sets of procedures are qualitatively similar.

Table D.5: Determinants of well flow and failure–linear models

flow (1-5) failure (0/1)
(1) (2) (3)

log(N) -0.513*** 0.00368 0.283***
(0.106) (0.0523) (0.0509)

Good monsoon 1.110*** 0.00881 0.00749
(0.347) (0.0118) (0.0129)

Reference plot FE YES YES YES
Observations 1,028 2,851 2,851
Number of ref. plots 514 697 697
Notes: Standard errors in parentheses clustered by reference plot

(*** p < 0.01, ** p < 0.05, * p < 0.10). Columns 1 and 2

are by ordinary least-squares; columns 3 is by two stage least

squares using the log number of existing wells in adjacency as an

instrument.
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E Drilling: Strategic substitutability

Using a five-year panel (2012-16) on 1,057 reference plots covered by the adjacency survey, we estimate

a linear probability model for drilling of the form

dit = αi + β1Nit + β2Rmt−1 + εit, (E.1)

where αi is a reference plot fixed effect. We assume classical measurement error in Nit and use the

number of existing wells in the adjacency (outside the reference plot), NE
it , as an instrument.

Identification While the strategic substitutability parameter β1 resembles a peer effect, causal iden-

tification is not as challenging as implied by Manski (1993). In particular, since Nit reflects past (as

opposed to current year) drilling by neighbors, and we are taking out plot fixed effects, β1 is identified

even if contemporaneous plot-specific drilling shocks εit are (spatially) correlated between plots in the

same adjacency.7 While identification does break down if εit is both spatially and serially correlated,

a spurious finding of strategic substitutability could only be explained by either negative spatial or

negative serial correlation in drilling shocks, either of which is implausible. In the likelier scenario of

positive spatial and serial correlation of drilling shocks, our estimate of β1 would be biased upward, i.e.,

toward zero, and thus away from strategic substitutability. Indeed, we test for one such source of bias

below by conditioning on the number of own borewells on the reference plot.

Results Column (1) of Table E.1 reports fixed effects least-squares estimates showing zero impact of

neighboring wells on drilling. Column (2) displays the first stage regression of Nit on the instrument

NE
it and column (3) the resulting FE-IV estimate. We find a significantly negative effect of neighboring

wells once we instrument for measurement error. One concern, noted above, is that, if there is spatial

correlation in the unobservables, then NE
it may be correlated with the residuals, which contain the

effect of own borewells on drilling. To assess this, in column (4) we add dummies for the number of

borewells on the reference plot to remove the effect of own borewells from the residuals.8 That there

is no appreciable difference between the estimates of β1 across columns (3) and (4) gives us further

confidence that negative effect of neighboring wells on reference plot drilling is indeed causal. Finally,

in column (5), for the purposes of validating the structural model in Section 4.5, we replicate the column

7Pfeiffer and Lin (2012) estimates the effect of a neighbors’ groundwater pumping on simultaneous own pumping
behavior using a cross-sectional instrumental variables strategy.

8Insofar as past drilling successes lead to more borewells on the reference plot, the fixed effects estimator of the own
borewell coefficients in this short panel are biased (as per Nickell 1981). Thus, we treat the column (4) results as a
specification test.
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(3) specification dropping observations with more than one functioning well on the reference plot.

Table E.1: Determinants of drilling 2012-16–Linear probability models

(1) (2) (3) (4) (5)
drill N drill drill drill

No. func wells exc ref plot (N ) -0.0154 -0.0482** -0.0485** -0.0441**
(0.0108) (0.0213) (0.0199) (0.0198)

Good Monsoon (R) -0.00340 0.000760 -0.00248 -0.00257
(0.00881) (0.00775) (0.00884) (0.00866)

No. exist wells exc ref plot 0.900***
(0.0285)

1 func well on ref plot -0.243***
(0.0241)

2 func wells on ref plot -0.447***
(0.0538)

Reference plot FE YES YES YES YES YES

Observations 5,285 5,285 5,285 5,285 4,837
Number of ref. plots 1,057 1,057 1,057 1,057 988

Notes: Standard errors in parentheses clustered by reference plot (*** p < 0.01, ** p < 0.05, * p <

0.10). Columns 1 and 2 are by ordinary least-squares; columns 3-5 are by two stage least squares using

the number of existing wells in adjacency (outside of reference plot) as instrument. Column 5 drops

observations with more than one functioning well on the reference plot.
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F Land values and active status

We use plot value data collected in the 2017 household survey to estimate the difference in present

discounted values between active and inactive land. Recall that an active plot is one on which at least

one drilling attempt was made during 2012-16 or which already had at least one functioning borewell

in 2012. Our survey asked each plot owner “if you were to sell this plot today, including the associated

water rights, how much would you receive in thousands of Rs per acre?” In evaluating the present

discounted value of the projected income flows off of their land, as reflected in their stated sales price,

we presume that farmers use the same discount factor that they would use in assessing the future net

benefits from drilling. This presumption is the basis for our calibration of β for the structural estimation.

To estimate the average marginal value of an active plot, we regress the reported value per acre of

plot j on the active status indicator Aj. Needless to say, Aj is potentially endogenous. For instance,

unobserved land amenities (e.g., ready access to markets, good soil) may both increase land values and

encourage groundwater development. It is also plausible that poorer households both own less valuable

land and can less afford to develop their land for groundwater extraction. To deal with such reverse

causality, we focus on households owning multiple plots in the same village and use household fixed

effects to estimate the land value regression. This procedure controls for both unobservable household-

specific and location specific factors.

In Table F.1, we report three regressions on each of two estimation samples. The first (“full”) sample

(cols. 1-3) consists of all plots with non-missing land values that are owned by multi-plot households.

The second (“trimmed”) sample (cols. 4-6) drops land value observations below the 5th and above

the 95th percentiles and is restricted to households owning at least two plots with admissible land

values. For each sample, we report, respectively, an OLS, village fixed effects, and household fixed

effects regression.

The village fixed effects estimator, based on 44 sample villages, purges locational factors correlated

with both land values and active status at the village level. That the coefficient on active status does not

fall (it actually rises a bit) in moving from OLS to village fixed effects indicates that these unobserved

location characteristics are not a serious confound. Similarly, the finding that the coefficient on active

status changes little in moving from village to household fixed effects (especially in the trimmed sample)

suggests that wealth or liquidity constraints, insofar as they determine active status, are not strongly

correlated with plot values. Unsurprisingly, standard errors are much smaller with the trimmed sample

than with the full sample. Even so, the household fixed effects estimates of the average marginal value

of an active plot are virtually identical across samples at around 80,000 Rs/acre, representing a 25%

market premium over an inactive plot.

Finally, we note a threat to the validity of our household fixed effect estimator: unobserved plot-level
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Table F.1: Plot values and active status

Full sample Trimmed sample
(1) (2) (3) (4) (5) (6)

Active (A = 1) 94.78 98.98 81.69 66.46 82.45 79.30
(19.88) (17.08) (16.55) (12.59) (9.402) (6.516)

Observations 2,346 2,346 2,346 2,093 2,093 2,093
R2 0.011 0.014 0.021 0.033 0.064 0.130
Fixed effects none village household none village household
No. of clusters 44 44 898 44 44 804

Notes: Robust-clustered standard errors in parentheses. Dependent variable is plot value in

thousands of Rs. per acre. Full sample (cols. 1-3) consists of all plots owned by multi-plot

households. Trimmed sample (cols. 4-6) removes land value observations below the 5th and

above the 95th percentiles and is restricted to households owning at least two plots with

admissible land values. Constant term not reported.

characteristics (e.g., soil quality) correlated with both land values and active status. Recall, however,

that location-specific unobservables, a far more important component of residual variation across villages

than across household plots within villages, have little impact on our regression results. This finding

suggests that any bias due to unobserved plot-level characteristics is likely to be negligible.

G Transitional dynamics

G.1 Equilibrium

We now describe the Adjacency Equilibrium over the transition path of the benchmark village economy

to a new steady state following the introduction of a tax τ on borewells at date t = 1. The village

map transits to a new (steady-state) Adjacency Equilibrium AEτ . We assume that i) CCPs along the

transition depend only on the state of the adjacency and date t, and ii) that the plot owner has beliefs

about the evolution of X(i1)t along an “average” transition. Assumption ii) requires that equilibrium

beliefs about the state of the adjacency at date t be correct when averaged over the map’s stochastic

transition paths. Thus, we have

Definition: Let F∞
0 (X) (or F∞

0 in short) be the stationary distribution over the state of the map

at the initial Adjacency Equilibrium AE0. An Adjacency Equilibrium over the transition path is a

vector of choice probability functions {CCPit(X(i1t), nit)}∞t=1 and of beliefs {F̃ ∗
it(X(i1)t+1|X(i1t), nit)}∞t=1

such that: a) CCPs and beliefs converge to the CCPs and beliefs of AEτ ; b) given beliefs F̃ ∗
it, the
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decision rule CCP ∗
it is the solution of plot owner i’s dynamic game “against nature” at every t; and c)

beliefs at each t are correct on “average”. That is, let Ft(Xt; {CCPs}ts=1, F
∞
0 ) be the joint distribution

over the state induced by the primitives, the vector of CCPs from date s = 1 to t and the initial steady

state distribution of the map F∞
0 . Further, let Ft(X(i2)t|X(i1)t, nit{CCPs}ts=1, F

∞
0 ) be the conditional

distribution implied by Ft(Xt; {CCPs}ts=1, F
∞
0 ). Then,

F̃ ∗
it(X(i1)t+1 = x(i1)t+1|X(i1t) = x(i1)t, nit) =

∑
x(i2)t

Ft(x(i2)t|x(i1)t, nit; {CCPs}ts=1, F
∞
0 )

Ft(x(i1)t+1|x(i1)t, x(i2)t, nit;CCPt). (G.1)

G.2 Solution algorithm

Recall that in our empirical structural model we reduce the dimensionality of the AE by partitioning

the set of adjacencies into types, such that all adjacencies of the same type share beliefs and CCPs, and

we limit the state of the adjacency to (N , n). We compute an AE along the transition path as follows:

Step 0 Solve for the steady state in the benchmark no-tax economy (τ = 0) using the algorithm in the

main text and recover the steady state distribution F∞
0 .

Step 1 Solve for the steady state in the counterfactual economy (τ > 0) using the algorithm in the

main text and recover the value function for each plot type (VT ).

Step 2 Assume that the village converges to this counterfactual steady state and that it is in this

steady state in period T.

Step 3 Guess a sequence of beliefs {F̃t}Tt=1 (as an initial guess, linearly interpolate beliefs from the

benchmark to the counterfactual steady state).

Step 4 Solve for plot owner’s decision as follows:

Step 4.1 Start in period T-1.

Step 4.2 Given value function VT and beliefs F̃T−1, solve for the CCPT−1 and recover VT−1.

Step 4.2 Iterate until t = 1 and recover {CCPt}Tt=1.

Step 5 Given {CCPt}Tt=1, sample an initial state of the map from the benchmark economy in the steady

state F∞
0 and simulate a transition of well drilling decisions, successes, and failures in every plot

on the map from t = 1 to T . Replicate this simulation NS times, e.g. NS = 250.
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Step 6 From the transition simulations, construct estimates of the one-period ahead state transition

matrices Ft(N ′|N , n) for each plot type (i.e., averaging across plots on the map of the same type

at the same date). Update beliefs and go back to Step 4 and continue iterating through step 6.

Step 7 Stop once the incremental change in {CCPt}Tt=1 is sufficiently small.
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