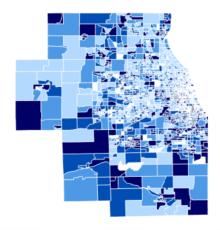
Spatial Health


Jesús Bueren° Carla Revilla* Siyu Shi*

°Católica-Lisbon

* EUI

Macro Lisbon, December 2025

Life-Expectancy at Age 65: Chicago

Q1: \leq 17.8 Q2: 17.8–19.2 Q3: 19.2–20.7 Q4: > 20.7

Bueren, Revilla, Shi Spatial Health 2/36

WHAT COULD EXPLAIN THESE SPATIAL HEALTH GAPS?

- Health is spatially segregated even within small geographic areas
- What generates these spatial differences?
 - 1 Sorting: healthier individuals choose different places to live.
 - 2 Local effects: the place where you grow up shapes your health
- Understanding what drives spatial health inequality is essential for evaluating place-based policies:
 - If spatial inequality reflects mostly sorting, then moving individuals across space would have limited impact on their health.

WHAT COULD EXPLAIN THESE SPATIAL HEALTH GAPS?

- To understand spatial health disparities, we need to identify what determines health.
- Health outcomes are to a large extent shaped by early-life choices:
 - Education
 - Health behaviors (mostly smoking)
- A large literature shows that both are heavily influenced by:
 - Parental background
 - Neighborhood environment and peers

THIS PAPER

- We develop an OLG model with multiple neighborhoods.
- Teens and parents make three decisions shaping life expectancy:
 - Neighborhood
 - 2 Education
 - 3 Smoking
- Local externalities:
 - <u>Health Behaviors:</u> A higher local smoking rate increases the probability of smoking.
 - <u>Education</u>: More affluent neighborhoods (better schools) raise the probability of attending college.
- House prices adjust to clear neighborhood markets.

THIS PAPER

- Quantify the role of:
 - Sorting across neighborhoods
 - Local externalities in education and health behavior
- Explain observed life-expectancy gaps across neighborhoods:
 - How much comes from parental background?
 - How much from neighborhood spillovers?
- Quantify to which extent changes in welfare from placed-based policies come from consumption versus health.
- Scaling-up placed based policies and analyze its impact on welfare

LITERATURE

- Empirical literature has identified peer effects play a key role in smoking Argys and Rees (2008), Lundborg (2006), Card and Giuliano (2013), Arduini et al (2025)
- Understanding differences in health inequalities across SES through health behavior choices
 - Cole et al. (2019); Mahler, Yum (2023); Margaris and Wallenius (2023); Bueren et al. (2025)
 - → We focus on the spatial dimension to understand health inequalities
- Recent spatial quantitative literature analyzing the welfare consequences of income segregation
 - Chyn and Daruich (2025); Fogli et al. (2025); Eckert and Kleineberg (2025)
 - → We analyze how health drives economic segregation and welfare
- Health in space
 Margaris and Wallenius (2025)
 - → Write an equilibrium model where spillovers are endogenous to analyze how placed based policies affect welfare

Introduction Model Estimation Decompositions Welfare Benefits of Place-Based Policies Autoriescence Prime Age Retirement Housing Market Equilibrium

MODEL

- We build an OLG model with 3 phases:
 - Adolescence: individuals are born in a given neighborhood and decide education and smoking decision.
 - Prime: enter the labor market, then have a kid and decide where to live taking as given education and smoking decisions.
 - 3 Retirement: individuals face survival uncertainty.
- ullet Individuals discount the future at a rate eta
- The utility function is given by:

$$u(c) = \frac{c^{1-\gamma} - 1}{1-\gamma} + b,$$

where b is a constant capturing the joy of living.

Bueren, Revilla, Shi Spatial Health 8/36

Introduction Model Estimation Decompositions Welfare Benefits of Place-Based Policies Adolescence Prime Age Retirement Housing Market Equilibrium

ADOLESCENCE

- A teenager is born in a given neighborhood n.
- Receives an parental transfer a_0
- Decides whether to smoke or not and whether to go to college or not.
- Are heterogeneous in terms of the utility of smoking and going to college
- Utility depends on:
 - Parental background: college (C^p) and smoking (S^p)
 - Neighborhood characteristics: fraction of smokers (\bar{S}_n) and average income (\bar{y}_n)
 - Idiosyncratic shocks related to college (ϵ_e) and smoking (ϵ_s)

ADOLESCENCE

• The teenager solves:

$$V_{0}(a_{0}, \mathcal{C}_{p}, \mathcal{S}_{p}, \epsilon_{c}, \epsilon_{s}, n) = \max_{c, a', \mathcal{C} \in \{1, 0\}, \mathcal{S} \in \{1, 0\}} u(c) + u^{\mathcal{S}}(\mathcal{S}_{p}, \bar{\mathcal{S}}_{n}, \epsilon_{s}) + u^{\mathcal{C}}(\mathcal{C}_{p}, \bar{y}_{n}, \epsilon_{c}) + \mathcal{B}\mathbb{E}V_{1}(a', \mathcal{C}, \mathcal{S}, z')$$
s.t. $c + a' = a_{0} - \mathcal{C}.\tau_{\mathcal{C}} + (1 - \mathcal{C})y_{0}$

$$\underline{a} \leq a' \leq 0$$

$$u^{\mathcal{S}}(\mathcal{S}_{p}, \bar{\mathcal{S}}_{n}, \epsilon_{c}) = \mathcal{S}\left[\alpha_{s} + \gamma_{s} \bar{\mathcal{S}}_{n}^{\rho_{s}} + \delta_{s} \mathcal{S}_{p} + \epsilon_{s}\right], \ \epsilon_{s} \sim \mathcal{U}[-\sigma_{s}, \sigma_{s}]$$

$$u^{\mathcal{C}}(\mathcal{C}_{p}, \bar{y}_{n}, \epsilon_{c}) = \mathcal{C}\left[\alpha_{c} + \gamma_{c} \bar{y}_{n}^{\rho_{c}} + \delta_{c} \mathcal{C}_{p} + \epsilon_{c}\right], \ \epsilon_{c} \sim \mathcal{U}[-\sigma_{c}, \sigma_{c}]$$

where $\epsilon_{\mathcal{C}}$ and $\epsilon_{\mathcal{S}}$ are assumed to be independent.

• The prime age phase is divided into two periods:

Period 1: individuals enter the labor market

- receive an exogenous income depending on education and a persistent shock (z)
- make a consumption savings decision

Period 2: on top individuals have a kid, decide where to live, and how much wealth to transfer to the kid.

Period 1

• In period 1 they solve:

$$V_1(a, \mathcal{C}, \mathcal{S}, z) = \max_{c, a'} u(c) + \beta \mathbb{E} V_2(a', \mathcal{C}, \mathcal{S}, z')$$
s.t. $c + a' = T(y_1(\mathcal{C}, \mathcal{S}, z)) + (1 + r)a$

Period 2

• In period 2, the value function is given by:

$$V_2(a, \mathcal{C}, \mathcal{S}, z) = \mathbb{E}\Big[\max_n \Big\{\tilde{V}_2^n(a, \mathcal{C}, \mathcal{S}, z) + \epsilon_n\Big\}\Big],$$

where $\tilde{V}_2^n(a,\mathcal{C},\mathcal{S},z)$ the neighborhoods-specific value functions.

• We assume ϵ_n to be i.i.d across neighborhoods and type-I extreme value distributed with scale parameter σ_n .

Period 2

• Choice specific value functions are given by:

$$\tilde{V}_{2}^{n}(a, \mathcal{C}, \mathcal{S}, z) = \max_{c, a', a_{0}^{k}} u(c) - \mu_{n} + \beta \mathbb{E}_{z} \Big[V_{3}(a', \mathcal{C}, \mathcal{S}, z') \Big]$$

$$+ \alpha \mathbb{E}_{\epsilon_{\mathcal{C}}, \epsilon_{\mathcal{S}}} \Big[V_{0}(a_{0}^{k}, \mathcal{C}, \mathcal{S}, \epsilon_{\mathcal{C}}, \epsilon_{\mathcal{S}}, n) \Big]$$
s.t. $c + a' + a_{0}^{k} = T(y_{2}(\mathcal{C}, \mathcal{S}, z)) + (1 + r)a - P_{n}$

 μ_n : utility flow from living in neighborhood n

 P_n : price of living in neighborhood n

 α : altruism parameter

 a_0^k : initial assets of the kid

RETIREMENT

- During retirement (two subperiods), individuals receive a pension which is a function of their education and the last productivity shock
- They make a consumption/saving decision

$$V_3(a, \mathcal{C}, \mathcal{S}, z) = \max_{c, a'} u(c) + \beta \delta_s(\mathcal{C}, \mathcal{S}) V_4(a', \mathcal{C}, \mathcal{S}, z)$$
s.t. $c + a' = T(\omega(\mathcal{C}, \mathcal{S}, z)) + (1 + r)a$

$$V_4(a, \mathcal{C}, \mathcal{S}, z) = u\Big((1 + r)a + T(\omega(\mathcal{C}, \mathcal{S}, z))\Big)$$

 $\delta_s(\mathcal{C},\mathcal{S})$: survival probability

HOUSING MARKET

- Housing prices are determined in equilibrium
- The supply of housing is given by:

$$S_n = A_n P_n^{\tau},$$

where τ drives the price elasticity of housing supply, A_n are housing supply shifters

Introduction Model Estimation Decompositions Welfare Benefits of Place-Based Policies Aktolescience Prime Age Retirement Housing Market Equilibrium

EQUILIBRIUM

- A stationary equilibrium in this economy is:
 - a set of neighborhood, savings, education, smoking, parental transfer decisions
 - house prices
 - average smoking rates and income defining neighborhood qualities

such that:

- hh decision are optimal given prices and neighborhood qualities,
- Housing market clears
- Neighborhood qualities are consistent with the households decisions

DATA

- To estimate the model we are going to use AddHealth data.
- Tracks a cohort of adolescents from grades 7-12 in the US during the 1994-95 school year through several follow-up waves: 1996, 2001-02, 2008-09, and 2016-18.
- Wave 1 includes comprehensive data on the parents smoking and college decisions
- Tract-level statistics using Census on income and house prices
- Sample: 6,034 parent-child pairs

DATA

- We set the number of neighborhoods equal to three: $n \in \{A, B, C\}$
- We assign kids in Addhealth to neighborhoods depending on the income distribution of the tract with respect to the MSA in which they lived:
 - A: income in the bottom 30%
 - *B*: income in 30%-90%
 - C: income in the top 10%

We follow a standard 2 step procedure:

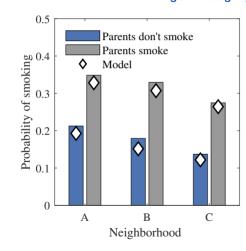
External:

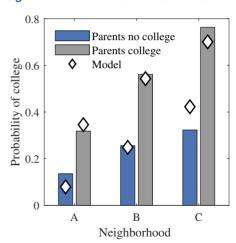
- Wages $y_t(\mathcal{C}, z)$ (PSID)
- Survival probabilities $\delta_s(\mathcal{C},\mathcal{S})$ (HRS)
- College costs $\tau_{\mathcal{S}} = 60k$
- House Prices: $P_A = 174k$; $P_B = 253k$; $P_C = 374k$
- Elasticity of housing supply: 1.75 (Saiz, 2010)
- Replacement rate: 0.494 (OECD, 2019)

Internal: The remaining parameters are estimated internally.

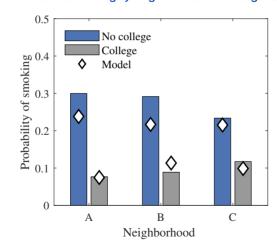
We use Add Health data to match:

- College graduation rates conditional on neighborhood and parental education
- Smoking rates conditional on neighborhood and parental smoking
- Parental transfers
- Value of Statistical Life
- Asset to income ratio
- Average marginal tax rate
- Intergenerational mobility


Estimated parameters: smoking and college decision

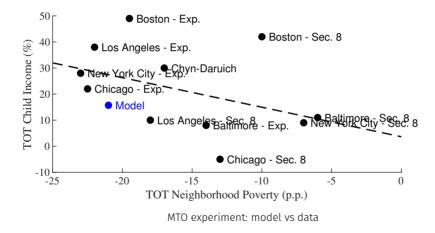

Parameter	Description	Value		
		S	\mathcal{C}	
$\alpha_{S C}$	constant	-1.72	-4.15	
$\delta_{\mathcal{S} \mathcal{C}}$	parental influence	0.27	0.44	
$\gamma_{S C}$	neighborhood effect	1.55	2.75	
	curvature	0.37	0.08	
ρ _{S C} σ _{S C}	support of $\epsilon_{\mathcal{S} \mathcal{C}}$	0.96	0.83	

Remaining estimated parameters


Parameter	Description	Value
b	value of life	10.30
eta	annual discount factor	0.98
α	altruism parameter	0.68
μ_n	amenity in NBH B, C	0.14, 0.15
σ_n	Gumbel taste shock for NBH	0.02
λ	tax rate	0.77

Model Fit: Smoking and College by Neighborhood and Parental characteristics

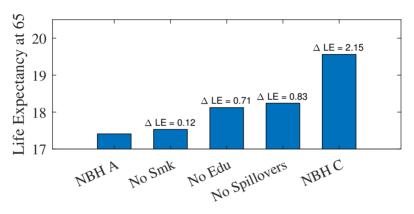
Model Fit: Smoking by Neighborhood and College Decision


Model Fit

Moments		Model			Data		
VSL		\$ 6.6 million			\$ 6 millions		
A/Y at age 40		4.33			4.32		
Cost of raising a kid		462k			301k		
% living in good NBH A,B,C		0.29, 0.62, 0.09			0.3, 0.6, 0.1		
Average tax rate		0.34		0.35			
		n' = A	n' = B	n' = C	n' = A	n' = B	n' = C
Transition	Pr(n' A)	0.36	0.60	0.04	0.49	0.48	0.03
probabilities	Pr(n' B)	0.28	0.62	0.10	0.25	0.69	0.06
	Pr(n' C)	0.17	0.65	0.18	0.18	0.67	0.16

VALIDATION

- We benchmark the model against evidence from the Moving to Opportunity (MTO) experiment:
 - Families in public housing were randomly offered housing vouchers.
 - Certain vouchers required relocating to neighborhoods with substantially lower poverty rates.
 - The program generated sizable gains for children exposed at young ages
 Chetty, Hendren, and Katz (2016)
- Model-based analogue:
 - Parents in the bottom 10% of the income distribution living in the poor neighborhood is granted a relocation voucher to richest neighborhood.
 - Partial equilibrium: local prices and neighborhood characteristics are held constant.

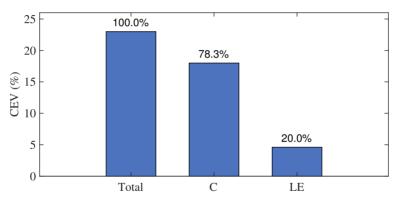

VALIDATION

PARENTAL SORTING VS. LOCAL EFFECTS

- We decompose the LE gap at birth across neighborhoods into:
 - Local effects: differences in neighborhood spillovers on smoking and education.
 - Sorting: differences in parental characteristics.
- Counterfactuals: for children born in NBH A, we simulate life expectancy if A had:
 - the smoking externality of NBH C,
 - the education externality of NBH C,
 - both externalities replaced by those of NBH C.
- The remaining gap after replacing both externalities is due to parental characteristics.

PARENTAL SORTING VS. LOCAL EFFECTS

Life Expectancy at Age 65 Across Neighborhood Scenarios

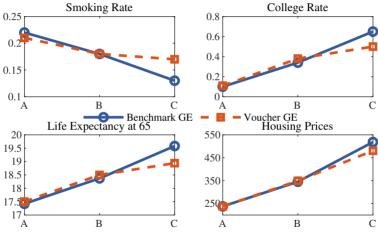

PARENTAL SORTING VS. LOCAL FEFECTS

- Total LE gap (NBH C- NBH A): 2.15 years
- Sources of the gap:
 - Smoking spillover: 0.12 years (6%)
 - Education spillover: 0.71 years (33%)
 - Both spillovers combined: 0.83 years (39%)
 - Remaining difference due to parental characteristics: 1.32 years (61%)

WELFARE BENEFITS OF PLACE-BASED POLICIES

- We evaluate the welfare gains from housing voucher programs for low-income families.
- Decompose welfare gain comes from
 - Consumption improvements
 - Health / life expectancy improvements
- Two perspectives:
 - Small scale: local prices and neighborhood characteristics are fixed. Measures direct effect on beneficiaries.
 - Scaling-up the program: neighborhood composition, housing prices, and local externalities change. Captures economy-wide feedback on welfare.

WELFARE BENEFITS OF PLACE-BASED POLICIES Small scale


Welfare Decomposition of Placed based Policies: Consumption and Health

GENERAL EQUILIBRIUM EFFECTS OF THE VOUCHER POLICY

- In general equilibrium, the voucher program is scaled up:
 - Eligible individuals can move to NBH C while paying only 60% of the housing price in C.
- Unlike the small-scale experiment, neighborhood conditions now adjust endogenously:
 - Changes in the inflow of families modify smoking and college externalities.
 - Neighborhood life expectancy shifts accordingly.
 - Housing prices react to changes in demand across locations.
- We now quantify how the program alters neighborhood quality and prices once these general equilibrium feedbacks are taken into account.

WELFARE BENEFITS OF PLACE-BASED POLICIES

General Equilibrium

Equilibrium Effects of Placed based Policies

CONCLUSIONS

- We develop a spatial equilibrium model with endogenous education, smoking and location decisions to understand the drivers of inequality in health across space.
- We find that 60% of the gap if life-expectancy across the bottom 10 and the bottom 30
 percent in income distribution is explained by differences in parental characteristics.
- Local spill-overs explain the rest (mostly in education)
- 20% of the welfare gains from placed based policies come from changes in life-expectancy
- When scaled up, placed based policy deteriorate local spillover in more affluent neighborhoods but generate overall welfare gains