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Introduction

Introduction

• This chapter follows chapter 3 in Hamilton.

• It provides a class of models for describing the dynamics of an
individual time series.

• We first go through a set of basic time series concepts and the
properties of various ARMA processes.

Stationary ARMA processes Jesús Bueren 2



Definitions

Definitions
Ensemble mean

• Imagine a sequence of I independent computers generating sequences
of random numbers from a distribution with finite first and second
moments:

{y (1)t }∞t=−∞; {y (2)t }∞t=−∞; · · · ; {y (I )t }∞t=−∞

y
(i)
t is a draw from the random variable Yt

- The ensemble mean is defined as:

E [Yt ] =

∫ ∞

−∞
yt fYt (yt)dyt = plim

I→∞
(1/I )

I∑
i=1

y
(i)
t = µt
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Definitions

Definitions
Autocovariance

- The autocovariance is defined as:

E [(Yt − µt)(Yt−j − µt−j)]

=

∫ ∞

−∞

∫ ∞

−∞
(yt − µt)(yt−j − µt−j)fYt ,Yt−j

(yt , yt−j)dytdyt−j

= plim
I→∞

(1/I )
I∑

i=1

(y
(i)
t − µt)(y

(i)
t−j − µt−j) = γjt
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Definitions

Definitions
Stationarity

• If neither the mean, nor the autocovariances depend on date t, then
the process Yt is said to be covariance-stationary or weakly stationary.

- E [Yt ] = µ ∀ t

- E [(Yt − µ)(Yt−j − µ)] = γj ∀ t
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Definitions

Definitions
Ergodicity

• A stationary process is said to be ergodic if:

plim
T→∞

1/T
T∑
t=1

y
(i)
t = plim

I→∞
1/I

I∑
i=1

y
(i)
t = µ

• Example of a non-ergodic stationary process:

y
(i)
t = µ(i) + ϵt ;µ

(i) ∼ N(0, λ); ϵt ∼ N(0, σ)

• Sufficient conditions for ergodicity of a stationary process:∑∞
j=0 |γj | < ∞
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Moving Average Processes

Moving-Average Processes
MA(1)

• Let {ϵt}, ϵt ∼ N(0, σ2), i.i.d: Gaussian white noise

• Consider the process:

Yt = µ+ ϵt + θϵt−1,

this time series is called a first-order moving average process,denoted
MA(1).
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Moving Average Processes

Moving Average Processes
MA(1)

• Expectation: E [Yt ] = µ

• Autocovariance:

E [(Yt − µ)(Yt−j − µ)] =


σ2(1 + θ2), if j = 0

θσ2, if j = 1

0, otherwise

⇒ Stationary

•
∑∞

j=0 |γj | = σ2(1 + θ2) + |θ|σ2

⇒ Ergodic
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Moving Average Processes

Moving Average Processes
MA(q)

• Expectation: E [Yt ] = µ

• Autocovariance:

E [(Yt − µ)(Yt−j − µ)] =


σ2(1 +

∑q
i=1 θ

2
i ), if j = 0

σ2(θj +
∑q−j

i=1 θiθi+j), if 0 < j <= q

0, otherwise

⇒ Stationary

•
∑∞

j=0 |γj | < ∞
⇒ Ergodic
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Moving Average Processes

Moving Average Processes
MA(∞)

• Expectation: E [Yt ] = µ

• Autocovariance:

E [(Yt − µ)(Yt−j − µ)] =

{
σ2(1 +

∑∞
i=1 θ

2
i ), if j = 0

σ2(θj +
∑∞

i=1 θiθi+j), if j > 0

⇒ Stationary

•
∑∞

j=0 |γj | < ∞ if
∑∞

i=1 |θi | < ∞
⇒ Ergodic
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Autoregressive Processes

Autoregressive Processes
AR(1)

• Let {ϵt}, ϵt ∼ N(0, σ2), i.i.d: Gaussian white noise

• Consider the process:

Yt = c + ϕYt−1 + ϵt ,

this time series is called a first-order autoregressive process,denoted
AR(1).

• Notice that this process takes the form of a first-order difference
equation.

• We know from our analysis of first-order difference equations that if
|ϕ| > 1, the consequences of ϵ’s for Y accumulate ⇒ not covariance
stationary
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Autoregressive Processes

Autoregressive Processes
AR(1)

• The solution is given by:

Yt =(c + ϵt) + ϕ(c + ϵt−1) + ϕ2(c + ϵt−1) + · · ·
=c/(1− ϕ) + ϵt + ϕϵt−1 + ϕ2ϵt−2 + · · ·

• This can be viewed as an MA(∞) process.

• With |ϕ| < 1,
∑∞

i=1 |ϕi | = 1/(1− |ϕ|) < ∞ ⇒ Ergodic.

• Autocovariance:

E [(Yt − µ)(Yt−j − µ)] = σ2ϕj/(1− ϕ2)
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Autoregressive Processes

Autoregressive Processes
AR(2)

• A second-order autoregression AR(2) satisfies,

Yt = c + ϕ1Yt−1 + ϕ2Yt−2 + ϵt (1)

or in lag operation notation,

(1− ϕ1L− ϕ2L
2)Yt = ϵt

• The process is stationary provided that the roots z1 and z2 of

1− ϕ1z − ϕ2z
2 = 0

lie outside the unit circle (or λ1 and λ2 smaller than one in modulus).

• We obtain:

(1− ϕ1L− ϕ2L
2) = (1− λ1L)(1− λ2L),

where λ1 = 1/z1 and λ2 = 1/z2
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Autoregressive Processes

Autoregressive Processes
AR(2)

• To find autocovariances subtract the unconditional mean
(µ = c/(1− ϕ1 − ϕ2)) on both sides of equation (1) multiply by
Yt−j − µ and take expectations:

γj = ϕ1γj−1 + ϕ2γj−2 for j > 0 (2)

• For the first 3 autocovariances we have:

γ0 =ϕ1γ1 + ϕ2γ2 + σ2

γ1 =ϕ1γ0 + ϕ2γ1

γ2 =ϕ1γ1 + ϕ2γ0

which is a system of equations with 3 equations and 3 unknowns.

• For further autocovariances, iterate on equation (2).
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Autoregressive Processes

Autoregressive Processes
AR(p)

• These techniques generalize in a straightforward way to pth-order
difference equation of the form

yt = ϕ1yt−1 + ϕ2yt−2 + · · ·+ ϕpyt−p + ϵt (3)

written in terms of the lag operator as:

(1− ϕ1L− · · · − ϕpL
p)yt = ϵt

• The process is stationary as long as the roots of:

(1− ϕ1z − · · · − ϕpz
p) = 0

lie outside the unit circle.

• Then,

(1− ϕ1L− · · · − ϕpL
p) = (1− λ1L)(1− λ2L)...(1− λpL)
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Autoregressive Processes

Autoregressive Processes
AR(p)

• To find autocovariances subtract the unconditional mean
(µ = 1/(1− ϕ1 − . . . ϕp)) on both sides of equation (3) multiply by
Yt−j − µ and take expectations:

γj = ϕ1γj−1 + · · ·+ ϕpγj−p (4)

• For the first p autocovariances we have:

γ0 =ϕ1γ1 + · · ·+ ϕpγp + σ2

γ1 =ϕ1γ0 + · · ·+ ϕpγp−1

...

γp =ϕ1γp−1 + · · ·+ ϕpγ0

which is a system of equations with p+1 equations and p+1
unknowns.

• For further autocovariances, iterate on equation (4).
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Mixed Autoregressive Moving Average Processes

Mixed Autoregressive Moving Average Processes
ARMA(p,q)

• An ARMA(p,q) process includes both autoregressive and moving
average terms:

Yt =c + ϕ1Yt−1 + ϕ2Yt−2 + · · ·+ ϕpYt−p

+ ϵt + θ1ϵt−1 + θ2ϵt−2 + · · ·+ θqϵt−q (5)

or in lag operator form,

(1− ϕ1L− · · · − ϕpL
p)Yt = c + (1 + θL+ · · ·+ θqL

q)ϵ

• Provided that the roots of:

1− ϕ1z − · · · − ϕpz
p = 0,

lie outside the unit circle, the process is stationary.
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Mixed Autoregressive Moving Average Processes

Mixed Autoregressive Moving Average Processes
ARMA(p,q)

• To find autocovariances subtract the unconditional mean
(µ = 1/(1− ϕ1 − . . . ϕp)) on both sides of equation (5) multiply by
Yt−j − µ and take expectations:

γj = ϕ1γj−1 + · · ·+ ϕpγj−p for j > q (6)

• For an ARMA(1,1) we have:

γ0 =ϕ1γ1 + σ2(1 + θ21)

γ1 =ϕ1γ0 + θ1σ
2

γj =ϕ1γj−1 if j > 1
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Mixed Autoregressive Moving Average Processes

Mixed Autoregressive Moving Average Processes
ARMA(p,q)

• Which is a system of equations with p+1 equations and p+1
unknowns.

• For further autocovariances, iterate on equation (6).

• For estimation of ARMA models using the Kalman filter we need the
first max{p, q + 1} autocovariances.
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Invertibility

Invertibility

• Consider an MA(1) process:

Yt − µ = (1 + θL)ϵ

• Provided the |θ| < 1 we can rewrite it as a AR(∞):

(1− θL+ θ2L2 − θ3L3 + . . . )(Yt − µ) = ϵt

• The process is then said invertible.

• For an MA(q) the process is invertible provided that the roots of:

1 + θ1z + θ2z
2 + · · ·+ θqz

q = 0

lie outside the unit circle.
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Box-Jenkins Modeling Philosophy

Box-Jenkins Modeling Philosophy

• Box and Jenkins popularized a three-stage method aimed at selecting
an appropriate model for the purpose of estimating a univariate time
series:

1. Identification: examine autocorrelation (ACF) and partial
autocorrelation (PACF) function. A comparison of the samples ACF
and PACF to those of various theoretical ARMA processes may suggest
several plausible models.

2. Estimation of each of the tentative models

3. Model selection and ensure residuals mimic white-noise process.
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Box-Jenkins Modeling Philosophy

Box-Jenkins Modeling Philosophy
Identification

• the jth autocorrelation of a covariance-stationary process is defined
as:

ρj =
γj
γ0

• Sample autocovariance: γ̂j =
1

T

∑T
j+1(yt − µ̂)(yt−j − µ̂)

• Sample autocorrelation: ρ̂j =
γ̂j
γ̂0

• If data was generated by a white noise process: ρ̂j
d−→ N(0, 1/T )
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Box-Jenkins Modeling Philosophy

Box-Jenkins Modeling Philosophy
Identification: Autocorrelation Functions

AR(1)
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1
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Box-Jenkins Modeling Philosophy

Box-Jenkins Modeling Philosophy
Identification

• the mth partial autocorrelation is the last coefficient in an OLS
regression of y on a constant and its j most recent values:

yt+1 = ĉ + α̂
(m)
1 yt + α̂

(m)
2 yt−1 + · · ·+ α̂

(m)
m yt−m+1 + êt

• If the data were really generated by a AR(p) process, then the sample

estimate α̂
(m)
m for m > p would have a variance around the true value

(0) that could be approximated by:

Var(α̂
(m)
m ) ≃ 1/T for m > p
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Box-Jenkins Modeling Philosophy

Box-Jenkins Modeling Philosophy
Identification: Partial Autocorrelation Functions
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