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Introduction

Introduction

• The previous chapter assumed that the population parameters were
known and showed how the population moments could be calculated.

• This chapter explores how to estimate the parameter values on the
basis of observations on Y.

• This chapter follows chapter 5 in Hamilton.
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Likelihood Function of an AR(1)

Likelihood Function of an AR(1)

• A Gaussian AR(1) process takes the form:

Yt = φYt−1 + εt , εt ∼ N(0, σ2) (1)

• the vector of population parameters to be estimated consists of
θ ≡ (φ, σ2)

• The approach that we follow in this chapter will be to calculate the
probability density:

fYT ,YT−1,...,Y1(yT , yT−1, . . . , y1;θ),

which can be viewed as the probability of observing the this particular
data given a value of θ

• The maximum likelihood estimate (MLE) of θ is the value of θ that
maximizes the probability of observing this particular data.
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Likelihood Function of an AR(1)

Likelihood Function of an AR(1)

• Consider the distribution of Y1, the first observation in the sample.

• Since no previous observation is on the data, and assuming
covariance-stationarity (|φ| < 1), Y1 comes from the unconditional
distribution of Y which is given by:

Y1 ∼ N(0, σ2/(1− φ2))

• Hence the density of the first observation takes the form:

fY1(y1;θ) = fY1(y1;φ, σ2)

=
1√

2πσ2/(1− φ2)
exp

[1

2

y2
1

σ2/(1− φ2)

]
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Likelihood Function of an AR(1)

Likelihood Function of an AR(1)

• Next, consider the distribution of the second observation Yt

conditional on observing Yt−1 = yt−1.

Yt |yt−1 ∼ N(yt−1, σ
2)

• Hence the density of the second observation takes the form:

fYt (yt−1;θ) = fYt (yt−1;φ, σ2)

=
1√

2πσ2
exp

[1

2

(yt − φyt−1)2

σ2

]
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Likelihood Function of an AR(1)

Likelihood Function of an AR(1)

• The joint likelihood of the full sample can be written as:

fYT ,YT−1,...,Y2,Y1(yT , yT−1, . . . , y2, y1;θ) =

fYT |YT−1,...,Y2,Y1
(yT |yT−1, . . . , y2, y1;θ).

fYT−1|YT−2,...,Y2,Y1
(yT−1|yT−2, . . . , y2, y1;θ).

...

fY2|Y1
(y2|y1;θ).fY1(y1;θ)

• Since the process is AR(1):

fYT ,YT−1,...,Y2,Y1(yT , yT−1, . . . , y2, y1;θ) =

fY1(y1;θ).
T∏
t=2

fYt |Yt−1
(yt |yt−1;θ).
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Likelihood Function of an AR(1)

Likelihood Function of an AR(1)

• The log likelihood function of the full sample can be found by taking
logs on the previous equation:

L(θ) = log fY1(y1;θ) +
T∑
t=2

log fYt |Yt−1
(yt |yt−1;θ).

• Clearly, the value of θ, that maximizes the likelihood is identical to the
value that maximizes the log-likelihood (computationally convenient).
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Likelihood Function of an AR(1)

Likelihood Function of an AR(1)

• To show how this works in practice I simulate an AR(1) process with
φ = 0.8 and σ = 1, and T = 200.

• I computed the log-likelihood on a grid of φ’s and σ’s and the MLE
using a non-linear equation solver.
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Likelihood Function of an AR(1)

Likelihood Function of an AR(1)
T=100
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Likelihood Function of an AR(1)

Likelihood Function of an AR(1)
T=500
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Likelihood Function of an AR(1)

Conditional Likelihood Function of an AR(1)

• An alternative to numerical maximization of the exact likelihood
function is to regard the value of y1 as deterministic and maximize
the likelihood conditioned on the first observation,

fYT ,YT−1,...,Y2|Y1
(yT , yT−1, . . . , y2|y1;θ) =

T∏
t=2

fYt |Yt−1
(yt |yt−1;θ),

the objective being to maximize:

logfYT ,YT−1,...,Y2|Y1
(yT , yT−1, . . . , y2|y1;θ) =

− [(T − 1)/2] log σ2 − [(T − 1)/2] log(2π)−
T∑
t=2

(yt − φyt−1)2

2σ2
,

(2)
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Likelihood Function of an AR(1)

Conditional Likelihood Function of an AR(1)
• Maximization of equation (2) wrt φ is equivalent to minimization of:

T∑
t=2

(yt − φyt−1)2,

which is achieved by an OLS regression of yt on yt−1:

φ̂ =

∑T
t=2 yt−1yt∑T
t=2 y

2
t−1

• Differentiating equation (2) wrt σ2 we get:

σ̂2 =
1

T − 1

T∑
t=2

(yt − φ̂yt−1)2

• The conditional MLE is trivial to compute: if sample is large ' MLE
and doesn’t require |φ| < 1
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Likelihood Function of an AR(p)

Likelihood Function of an AR(p)

• A Gaussian AR(p) process takes the form:

Yt = φ1Yt−1 + · · ·+ φpYt−p + εt , εt ∼ N(0, σ2)

• For write the Likelihood function we are going to break the joint
density in two parts:

fYT ,...,Y1(yT , . . . , y1; θ) =

fYT ,...,Y1|Yp ,...,Y1
(yT , . . . , yp+1|yp, . . . , yp; θ)fYp ,...,Y1(yp, . . . , y1; θ)

the first block is trivial (just like the ar1 case).

• The second block is a bit more tedious.
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Likelihood Function of an AR(p)

Likelihood Function of an AR(p)

• The first p observations in the sample yp = (y1, . . . , yp) are the
realization of a p-dimensional Gaussian variable: Yp ∼ N(0,V),
where,

V =


γ0 γ1 γ2 . . . γp−1

γ1 γ0 γ1 . . . γp−2
...

...
... . . .

...
γp−1 γp−2 γp−3 . . . γ0


we saw how to derive γ’s in the previous chapter.

• The rest is a piece of cake.
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Likelihood Function of an AR(p)

Conditional Likelihood Function of an AR(p)

• As in the AR(1) case, maximization of the full likelihood must be
accomplished numerically.

• In contrast, the the conditional MLE (taking as given the first p
observations) of φp coincides with an OLS regression of yt on
yt−1, . . . , yt−p.

• The conditional MLE coincides with a sample average of square
residuals.

• The MLE and the conditional MLE estimates have the same
large-sample distribution.
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Conditional Likelihood on an ARMA(p,q)

Conditional Likelihood on an ARMA(p,q)

• The simplest approach to calculating the exact likelihood function for
a Gaussian ARMA process is to use the Kalman filter that we will
cover in two chapters.

• A Gaussian ARMA(p, q) process take the form:

Yt =φ1Yt−1 + · · ·+ φpYt−p

+ εt + θ1εt−1 + · · ·+ θqεt−q, εt ∼ N(0, σ2)
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Conditional Likelihood on an ARMA(p,q)

Conditional Likelihood on an ARMA(p,q)

• Taking as given y0 ≡ (y0, y−1, . . . , y−p+1) and
ε0 ≡ (ε0, ε−1, . . . , ε−p+1), the sequence {ε1, . . . , εT} can be recovered
from:

εt = yt − φ1yt−1 − · · · − φpyt−p − θ1εt−1 − · · · − θqεt−q

• The conditional log-likelihood is then:

L(θ) = −T

2
log(2π)− T

2
log(σ2)−

T∑
t=1

ε2
t

2σ2

• Initial conditions:

- Set ε0 and y0 to zero.
- Use the first p observations of y as initial conditions and set ε1, . . . , εq

to zero
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Statistical Inference with Maximum Likelihood

Statistical Inference with Maximum Likelihood

• If the sample size T is sufficiently large the MLE θ̂ can be
approximated by:

θ̂ ∼ N(θ0,T
−1J −1),

where J is the information matrix that can be estimated with:

J = − 1

T

∂2L
∂θ∂θ′

• Therefore, one could use the estimated variance covariance matrix of
θ̂ for testing hypotheses.
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Statistical Inference with Maximum Likelihood

Likelihood Ratio Test

• Another popular approach to testing hypotheses about parameters
that are estimated by maximum likelihood is the likelihood ratio test.

• Suppose a null hypothesis implies a set of m different restrictions on
the value of the (a× 1) parameter vector θ.

• Road map:

1. Estimate the restricted L(θ̃) and the unrestricted model L(θ̂)
2. Under the null that these restriction are true: 2[L(θ̂)− L(θ̃)] ' χ2(m)
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Model Fit

Model Selection Criteria

• Inspection of the sample autocorrelation function and sample partial
autocorrelation function to identify ARMA models is somewhat of an
art rather than a science.

• A more rigorous procedure to identify an ARMA model is to use
formal model selection criteria.

• The two most widely used criteria are the Akaike information criterion
(AIC) and the Bayesian criterion (BIC or SIC):

AIC = 2k − 2L
BIC = log(T )k − 2L
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