Chapter 3: Maximum Likelihood Estimation.
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Introduction

Introduction

e The previous chapter assumed that the population parameters were
known and showed how the population moments could be calculated.

e This chapter explores how to estimate the parameter values on the
basis of observations on Y.

e This chapter follows chapter 5 in Hamilton.
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Likelihood Function of an AR(1)

Likelihood Function of an AR(1)
e A Gaussian AR(1) process takes the form:
Ye=0Ye1 + e e ~ N(0,07) (1)

e the vector of population parameters to be estimated consists of
0= (¢,0°)

e The approach that we follow in this chapter will be to calculate the
probability density:

vrYr 1ovi(YT ¥YT=1,--,y1; 0),

which can be viewed as the probability of observing the this particular
data given a value of 0

e The maximum likelihood estimate (MLE) of @ is the value of € that
maximizes the probability of observing this particular data.
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Likelihood Function of an AR(1)

Likelihood Function of an AR(1)

e Consider the distribution of Y7, the first observation in the sample.

¢ Since no previous observation is on the data, and assuming
covariance-stationarity (|¢| < 1), Y1 comes from the unconditional
distribution of Y which is given by:

Y1~ N(0,0%/(1 = %))
e Hence the density of the first observation takes the form:
le(yl; 0) = le()/1; ¢a 02)
2

L ex [Eiyl
202 (1=¢2) P l20%/(1— )
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Likelihood Function of an AR(1)

Likelihood Function of an AR(1)

¢ Next, consider the distribution of the second observation Y;
conditional on observing Y;_1 = y;_1.

Ytb’t—l ~ N(}/t—1,02)
e Hence the density of the second observation takes the form:
fr.(ye-1:0) = fr,(ye-1: ¢, 0?)

_ 1 exp [} (e — ¢}/t—1)2]
V27102 2 o2
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Likelihood Function of an AR(1)

Likelihood Function of an AR(1)

e The joint likelihood of the full sample can be written as:

e Yr 1 Yoo (YT yT—1, - y2, ¥1;0) =
fyrivr 1Yoy YTIYT 15 Y2, ¥1: 0).

e Yy Yoa Y T—1lyT-2, - -+, ¥2,11: 0).
fyy v (V21y1; 0)- vy (v1; 0)
e Since the process is AR(1):

e Yr g Yoo (YT Y71, Y2, 01:0) =

i,
fri(v1:0). T [ Avavees (velye-1:6).
t=2
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Likelihood Function of an AR(1)

Likelihood Function of an AR(1)

e The log likelihood function of the full sample can be found by taking
logs on the previous equation:

T

L(6) = log fy, (y1;0) + Y _log fy, v, _, (velyr-1: 0).
t=2

e Clearly, the value of 0, that maximizes the likelihood is identical to the
value that maximizes the log-likelihood (computationally convenient).
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Likelihood Function of an AR(1)

Likelihood Function of an AR(1)

 To show how this works in practice | simulate an AR(1) process with
¢=0.8and o =1, and T = 200.

e | computed the log-likelihood on a grid of ¢'s and ¢'s and the MLE
using a non-linear equation solver.
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Likelihood Function of an AR(1)

Likelihood Function of an AR(1)
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Likelihood Function of an AR(1)

Likelihood Function of an AR(1)
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Likelihood Function of an AR(1)

Conditional Likelihood Function of an AR(1)

e An alternative to numerical maximization of the exact likelihood
function is to regard the value of y; as deterministic and maximize
the likelihood conditioned on the first observation,

;
fyrYr i YT Y11, Y2015 0) = H v (Velye-1;0),
t=2

the objective being to maximize:

logfy, vr 1. va i (YT Y71, -, 2|1, 0) =

(}’t - ¢)/t—1)2
202 ’

()

~ (T —1)/2]logo® —[(T —1)/2] log(27) —

]~

Il
N

t
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Likelihood Function of an AR(1)

Conditional Likelihood Function of an AR(1)

» Maximization of equation (2) wrt ¢ is equivalent to minimization of:

T
Z ¢yt17

t=2

which is achieved by an OLS regression of y; on y;_1:

.
_ e Ve
- T

D=2 ytzfl

« Differentiating equation (2) wrt o2 we get:

-
Z ¢Yt 1

t=2

A

e The conditional MLE is trivial to compute: if sample is large ~ MLE
and doesn't require |¢| < 1
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Likelihood Function of an AR(p)

Likelihood Function of an AR(p)

* A Gaussian AR(p) process takes the form:
Ye=¢1Yeo1+ -+ dpYiop +er, €0 ~ N(0,0°)

e For write the Likelihood function we are going to break the joint
density in two parts:

ey, v 0) =
fYT,...,Y1|Yp,...,Y1(}/T, PN ,yp+1|yp, < Y e)pr,...,Yl (yp, co Y 0)

the first block is trivial (just like the arl case).

e The second block is a bit more tedious.
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Likelihood Function of an AR(p)

Likelihood Function of an AR(p)

MLE

* The first p observations in the sample y, = (y1,...,yp) are the

realization of a p-dimensional Gaussian variable: Y, ~ N(0, V),
where,

Yo 71 72 - p—1
M 7o " -ee Op-2
v=| . g
Yp—1 Vp—2 Vp-3 --- Y0

we saw how to derive 's in the previous chapter.

e The rest is a piece of cake.
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Likelihood Function of an AR(p)

Conditional Likelihood Function of an AR(p)

MLE

As in the AR(1) case, maximization of the full likelihood must be
accomplished numerically.

In contrast, the the conditional MLE (taking as given the first p
observations) of ¢, coincides with an OLS regression of y; on
Yi—1,... 7yt—p-

The conditional MLE coincides with a sample average of square
residuals.

The MLE and the conditional MLE estimates have the same
large-sample distribution.
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Conditional Likelihood on an ARMA(p,q)

Conditional Likelihood on an ARMA(p,q)

e The simplest approach to calculating the exact likelihood function for
a Gaussian ARMA process is to use the Kalman filter that we will
cover in two chapters.

e A Gaussian ARMA(p, q) process take the form:

Y: :¢1 Yici+ -+ ¢th—p
+ e+ b1ep—1 + -+ Oger—q, € ~ N(O, 02)
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Conditional Likelihood on an ARMA(p,q)

Conditional Likelihood on an ARMA(p,q)

e Taking as given yo = (Y0, y-1,--,Y-p+1) and

€0 = (€0,€-1,-..,€_pyt1), the sequence {e1,...,e7} can be recovered

from:

€ =Yt — Q1yt-1— " — ¢th—p —bOer 1 — - — qut—q
e The conditional log-likelihood is then:

T 2
L£(0) = —g log(27) — g log(c?) — Z St

t=1

e |nitial conditions:
- Set €p and yp to zero.

- Use the first p observations of y as initial conditions and set €3, ...

to zero
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Statistical Inference with Maximum Likelihood

Statistical Inference with Maximum Likelihood

e If the sample size T is sufficiently large the MLE 6 can be
approximated by:

0~ N0, TTT7Y),
where J is the information matrix that can be estimated with:

1 9%L

J =" T o600

e Therefore, one could use the estimated variance covariance matrix of
0 for testing hypotheses.
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Statistical Inference with Maximum Likelihood

Likelihood Ratio Test

e Another popular approach to testing hypotheses about parameters
that are estimated by maximum likelihood is the likelihood ratio test.

e Suppose a null hypothesis implies a set of m different restrictions on
the value of the (a x 1) parameter vector 6.

¢ Road map:

1. Estimate the restricted £(6) and the unrestricted model L'(NBA)
2. Under the null that these restriction are true: 2[£(0) — £(6)] ~

x*(m)
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Model Fit

Model Selection Criteria

¢ Inspection of the sample autocorrelation function and sample partial
autocorrelation function to identify ARMA models is somewhat of an

art rather than a science.

e A more rigorous procedure to identify an ARMA model is to use
formal model selection criteria.

e The two most widely used criteria are the Akaike information criterion
(AIC) and the Bayesian criterion (BIC or SIC):

AIC =2k — 2L
BIC = log(T)k — 2L
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