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Introduction

Introduction

• This chapter describes the dynamic interactions among a set of
variables collected in an (n × 1) vector yt .

• A p-th order vector autoregression, VAR(p), is a vector generalization
of an AR(p):

yt = c +Φ1yt−1 + · · ·+Φpyt−p + ϵt (1)

• The (n × 1) vector ϵt is a vector generalization of white noise:

E (ϵt) = 0

E (ϵtϵ
′
τ ) =

{
Ω for t = τ

0 otherwise
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Introduction

Introduction

• The first row of the vector system specifies that:

y1t = c1 + ϕ
(1)
1,1y1,t−1 + · · ·+ ϕ

(1)
1,nyn,t−1

+ ϕ
(2)
1,1y1,t−2 + · · ·+ ϕ

(2)
1,nyn,t−2

+
... + · · ·+

...

+ ϕ
(p)
1,1y1,t−p + · · ·+ ϕ

(p)
1,nyn,t−p

+ ϵ1,t

Thus a vector autoregression is a system in which each variable is
regressed on a constant and p of its own lags as well as on p lags of
each other variables.
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Stationarity

Stationarity

• As we did in the univariate case, we can rewrite the VAR(p) system
as a VAR(1):

ξt = Fξt−1 + vt ,

where,

ξt =

 yt − µ
...

yt−p+1 − µ

 ,F =


Φ1 Φ2 . . . Φp−1 Φp

In 0 . . . 0 0
...

... . . .
...

...
0 0 . . . In 0


• If the eigenvalues of F all lie inside the unit circle, then the VAR turns
out to be covariance stationary
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Stationarity

Stationarity

• A vector yt is said to be covariance-stationary if its first and second
moments are independent of date t.

• Assuming covariance- stationarity, we can take expectations of both
sides of equation (1) to find:

µ = (In −Φ1 − · · · −Φp)
−1c

We can thus rewrote equation (1) as:

yt − µ = Φ1(yt−1 − µ) + · · ·+Φp(yt−p − µ) + ϵt
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Maximum Likelihood Estimation

The Conditional Likelihood Function

• The likelihood function is calculated in the same way as for a scalar
autoregression.

• Conditional on the values of y observed from date t − p to t − 1, the
value of yt follows:

yt |yt−1, . . . , yt−p ∼ N(c+Φ1yt−1 + · · ·+Φpyt−p,Ω)

• The conditional MLE of Φ coincides with n OLS regressions (prove
it!).

• The conditional MLE of Ω coincides with sample variance-covariance
matrix of the OLS residuals (prove it!).
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Granger Causality

Granger Causality

• Very bad name: Granger predictability would be much better.

• One of the key questions that can be addressed with vector
autoregression is how useful some variables are for forecasting
others.

• In a bivariate VAR describing x and y , y does not Granger-cause x in
case if it cannot help forecast x .

▶ The coefficient matrices Φj are lower triangular for all j

[
xt
yt

]
=

[
c1
c2

]
+

[
ϕ
(1)
11 0

ϕ
(1)
21 ϕ

(1)
22

] [
xt−1

yt−1

]
+ · · ·+[

ϕ
(p)
11 0

ϕ
(p)
21 ϕ

(p)
22

][
xt−p

yt−p

]
+

[
ϵ1t
ϵ2t

]
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Granger Causality

Granger Causality
F-test

• A simple approach would be to consider the regression:

xt = c1 + ϕ
(1)
11 xt−1 + · · ·+ ϕ

(p)
11 xt−p + ϕ

(1)
12 yt−1 + · · ·+ ϕ

(p)
12 yt−p (2)

• Then, you could conduct an F-test for the null hypothesis (no granger
causality):

H0 : ϕ
(1)
12 = · · · = ϕ

(p)
12 = 0
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Granger Causality

Granger Causality
Test for Granger Causality

• Estimate eq (2) and compute the sum of squared residuals:

RSS1 =
T∑
t=1

û2t

• Re-estimate eq (2) by imposing the null and compute the sum of
squared residuals:

RSS2 =
T∑
t=1

ê2t

• Compute:

S =
T (RSS2 − RSS1)

RSS1

• Under the null, reject if S greater than the 5% critical values for a
χ2(p)
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Granger Causality

Granger Causality
Relation between ’causality’ and ’Granger causality’

• Granger causality and causality are very different concepts.

• In fact, they can run in the opposite direction as we will see in the
following example:

- The price as a stock represent the expected discounted present value of

future dividends: Pt = E
[∑∞

j=1

Dt+j

(1 + r)j

]
- Imagine Dt = d + ut + δut−1 + vt , ut and vt ∼ WN and observable.

- Then E [Dt+j ] =

{
d + δut if j = 1

d if j > 1
,

- We can write:

Pt =
d

r
+

δut
1 + r

Dt = −d

r
+ (1 + r)Pt−1 + ut + vt

• Hence, in this model, Granger causation runs in the opposite direction
than true causation.
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IRFs

Reduced-form IRFs

• Assuming stationarity, we can rewrite a the reduced form VAR(p) as a
VMA (∞):

yt = µ+ ϵt +
∞∑
i=1

Ψiϵt−i

• We could simply simulate the system to compute the IRFs.

• The IRF (
∂yi,t+s

∂ϵj,t
) describes the response of yi ,t+s to a one-time unit

change in yj ,t holding all other variables at data t or earlier held
constant.
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IRFs

Reduced-form IRFs
Interpretation

• Can we interpret the IRF as the causal effect of yj ,t on yi ,t+s?

• Imagine that we knew {yt−1, . . . , yt−p}

• Suppose we were told at date t that y1,t was larger than expected,
how would this cause us to revise our forecast about variable yi ,t? Is

this
∂yi,t+s

∂ϵj,t
?

• No, unless Ω is a diagonal matrix.
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IRFs

Reduced-form IRFs
Error Bands

1. Estimate VAR and save Φ̂, and residuals ϵ̂ = {ϵ̂1, . . . , ϵ̂T}

2. Draw uniformly and with replacement from these residuals and use Φ̂
to construct a new simulated serie of Ys (take Ys

1 from the data).

3. Estimate a new Φ̂ from this new sample and its associated impulse
response.

4. Go back to 2 until you generate M impulse response functions.
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Structural VARs

From the Structural to the Reduced-form VAR

• The impulse responses in terms of ϵt have a difficult economic
interpretation.

• We are shocking one element in ϵ leaving the others unchanged but
Ω is a non-diagonal matrix.

• As such, we cannot interpret them as the causal effect of one variable
on another one.
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Structural VARs

The Structural Model

• Therefore let’s think about writing the structural model (the data
generating process):

B0yt = k+ B1yt−1 + · · ·+ Bpyt−p + ut , ut ∼ N(0, In) (3)

where D is a diagonal matrix.

• If we knew the data-generating process, we could understand
contemporaneous and future causal effects of one variable over the
other.

• In this VAR, shocks have a well defined economic interpretation.

• Problem: We cannot estimate the system (3) by a series of n OLS
equations because of reverse causality.
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Structural VARs

The Structural Model
Example: Bivariate VAR(1)

• Imagine that we want to study the effect of changes in the interest
rate (rt) on output growth (yt).

• A structural VAR can help us answering what is the effect of a change
in the interest rate on output.[

b01,1 b01,2
b02,2 b02,2

] [
yt
rt

]
=

[
b11,1 b11,2
b12,2 b12,2

] [
yt−1

rt−1

]
+

[
uyt
urt

]
with [

uyt
urt

]
∼ N(0, I2), I2 =

[
1 0
0 1

]
• b01,2 captures the contemporaneous causal effect of an change in the
interest rate on output.
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Structural VARs

The Structural Model
Example: Bivariate VAR(1)

• We can rewrite the structural VAR as a system of two equations:

yt = α1rt + α2yt−1 + α3rt−1 + uyt (4)

rt = β1yt + β2yt−1 + β3rt−1 + urt (5)

• We cannot estimate these two equations by OLS:

uyt → yt → rt so rt is endogenous 4
urt → rt → yt so yt is endogenous 5
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Structural VARs

The Structural Model
Identification Problem

• We can premultiply the structural VAR(1) by B−1
0 :

yt = B−1
0 k+ B−1

0 B1yt−1 + · · ·+ B−1
0 Bpyt−p + B−1

0 ut

yt = c +Φ1yt−1 + · · ·+Φpyt−p + ϵt

here we see that the reduced form VAR shocks (ϵt) are linear
combination of the structural shocks (ut).

• The model implies that:

Ω = B−1
0 (B−1

0 )′ (6)

• We can estimate consistently Ω but we cannot we cannot identify
B−1

0 as there are infinite B0 that satisfy 6.
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Structural VARs

The Structural Model
Example

• Think of Ω = B−1
0 (B−1

0 )′ as a system of equations:[
σ2
y σ2

y ,r

σ2
y ,r σ2

r

]
=

[
b−1
11 b−1

12

b−1
21 b−1

22

] [
b−1
11 b−1

21

b−1
12 b−1

22

]
• We can write it as:

σ2
y = (b−1

11 )
2 + b−1

12 b
−1
12

σ2
y ,r = b−1

11 b
−1
21 + b−1

12 b
−1
22

σ2
y ,r = b−1

21 b
−1
11 + b−1

22 b
−1
12

σ2
r = (b−1

21 )
2 + (b−1

22 )
2

⇒ 3 equations and 4 unknowns
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Structural VARs

Recursive VARs

• A common solution is to impose restrictions on the structural model
(based in economic theory) so that the can recover the structural
parameters.

• Imagine that we are willing to restrict the contemporaneous relation
of the different variables:
▶ B0 is lower triangular/upper triangular.

• Procedure:

1. Estimate the reduce form VAR.
2. Based on Ω̂ compute B0 using the Cholesky decomposition.
3. Compute IRF and confidence bands using the structural shocks
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Structural VARs

Recursive VAR

• Cholesky Decomposition decomposes Ω into

Ω = B−1
0 (B−1

0 )′

where B−1
0 is lower triangular.

• Once we have an estimate of B−1
0 , we can shock one element of ut

(the structural shock) and compute the contemporaneous and future
causal impact of the innovation of a particular variable on another
one.

yt = c +Φ1yt−1 + · · ·+Φpyt−p + B−1
0 ut

VAR Jesús Bueren 21



Structural VARs

Recursive VAR
• In our bivariate VAR example, we could assume that monetary policy
works with a lag and thus has no contemporaneous effect on output.

• This would entail:[
b01,1 �

�b01,2
b02,2 b02,2

] [
yt
rt

]
=

[
b11,1 b11,2
b12,2 b12,2

] [
yt−1

rt−1

]
+

[
uyt
urt

]
• And thus the system of equations from B1

0 (B
1
0 )

′ = Ω would become:

σ2
y = (b−1

11 )
2

σ2
y ,r = b−1

11 b
−1
21

σ2
r = (b−1

21 )
2 + (b−1

22 )
2

This is now a system of 3 equation and 3 unknows solved by the
Cholesky decomposition.
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Structural VARs

Structural IRFs

• Assuming stationarity, we can rewrite a structural VAR(p) as a VMA
(∞):

yt = µ+ ut +
∞∑
i=1

Ψiut−i
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Structural VARs

Structural IRFs
Error Bands

1. Estimate VAR and save Φ̂, and residuals ϵ̂ = {ϵ̂1, . . . , ϵ̂T}

2. Draw uniformly and with replacement from these residuals and use Φ̂
to construct a new simulated serie of Ys (take Ys

1 from the data).

3. Estimate Φ̃s , Ω̃s and a new (B̃s
0)

−1 from this new sample and its
associated impulse response.

4. Go back to 2 until you generate S impulse response functions.
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