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Introduction

Introduction

• This course is an introduction to modern macroeconomic theory.

• Our main emphasis will be the analysis of resource allocations in
dynamic stochastic environments.

• We will go though the analysis of:

▶ Equilibrium with complete markets.
▶ Dynamic Programming (DP)
▶ Applications of DP (RBC models)

• We will start, however, with a simple environment: static exchange
economy.

Main Reference: Recursive Macroeconomic Theory by Ljungqvist
and Sargent
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Exchange Economy

Exchange Economy

• Simple environment: finite dimensional, static exchange economy.

• In an exchange economy, people interact in the market place.

• They buy and sell goods taking market prices as given in order to
maximize their utility.

• Their choices are constrained by their endowments.
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Exchange Economy

Exchange Economy

• If we can find a set of selling and buying decision for all individuals
and a set of prices such that:

▶ Given these prices, people’s selling and buying decision are optimal.

▶ No excess demand or excess supply of any good.

⇒ Our economy is in equilibrium.
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Exchange Economy

Setup

• Consider an economy with i = 1, . . . , n consumers and j = 1, . . . ,m
commodities.

• Each individual i is endowed with w j
i units of good j .

(w1
i ,w

2
i , . . . ,w

m
i )

• Individuals have preferences over these goods and will trade with each
other to maximize their well-being.
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Exchange Economy

Assumptions

1. Consumer’s preferences are representable by a utility function
u.ui : X ≡ Rm

+ → R

2. u is continuous and first and second derivatives exist.

3. Preferences are strictly monotonic (the more I consume, the better).

4. u is strictly concave (no flat section in indifference curves).

5. Every agent is endowed with a positive amount of each good.

6. ∥ Dui (xk) ∥→ ∞ as xk → x where some component of x is equal to
zero.
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Exchange Economy

Problem

• Given a set of prices p = (p1, . . . , pm)′, consumers in this economy
solve the following problem:

max
xi

ui (xi )

s.t. p′(xi −wi ) ≤ 0

Given that preferences are monotonic, individuals will be on their
budget set: p′(xi −wi ) = 0

• Following is the Lagrangian of the consumer problem:

L = ui (xi )− µip
′(xi −wi )
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Exchange Economy

Problem
FOCs

• FOCs are necessary and sufficient to characterize xi :

Dui (xi ) = µip (M × 1)

• For each good we have:

∂ui (xi )

∂x ji
= µip

j

▶ The MRS for any two goods must be equal to the ratio of prices

▶ Any two agents hold the same MRS since they face the same prices.
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Exchange Economy

Definition

• Competitive Equilibrium is an allocation x∗ and a price vector p∗

such that:

1. The allocation x∗
i solves agent i ’s problem given x∗, for all i ’s.

2. Market clears:

n∑
i=1

x
∗
i ≤

n∑
i=1

wi
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Exchange Economy

Definition

• An allocation x is Pareto optimal if it is feasible and there is no
other feasible allocation x̃ such that ui (x̃

′
i ) ≥ ui (xi ) for all

i ∈ {1, ...,N}, and uj(x̃j) > uj(xj) for at least one j ∈ {1, ...,N}.

• First Welfare Theorem Every competitive allocation is Pareto
optimal.

• Sketch of the proof:

1. Assume x̃ is preferable by at least one agent j and feasible.

2. This allocation for agent j was out of his budget set with prices p.

3. All other agents i cannot be consuming less and be as well off.

4. Markets cannot clear ⇒ allocation not feasible.
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Exchange Economy

Social Planner’s Problem

• Next, we would like to know whether every Pareto optimal allocation
can be sustained by a competitive equilibrium.

• The set of Pareto optimal allocation can be characterized by the
solution to the following planner’s problem:

max
x

n∑
i=1

αiui (xi ) with
n∑
i

αi = 1

s.t.
n∑

i=1

wi =
n∑

i=1

xi

with αi representing the weights of the different agents in the
planner’s objective.

Equilibrium with Complete Markets Jesús Bueren 11



Exchange Economy

Social Planner’s Problem
• The solutions to the planner’s problem is characterized by:

αiDui (xi ) = π
n∑

i=1

wi =
n∑

i=1

x∗i

• The competitive allocation instead was characterized by:

Dui (xi ) = µip

p′(wi − xi ) = 0
n∑

i=1

wi =
n∑

i=1

xi

• Therefore if αi = 1/µi and p = π, the social planner and the
competitive equilibrium coincide.
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Exchange Economy

Social Planner’s Problem

• Then, whether a Pareto optimal allocation can be decentralized boils
down to whether at prices π, the allocation x is feasible for each
consumer.

• In order the allocation to be affordable to every agent, the planner
has to redistribute income across agents:

τi (α) = π′(xi −w)

• Note that such redistribution comes at zero cost:

n∑
i=1

τi (α) = 0
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Exchange Economy

Social Planner’s Problem

• Second Welfare Theorem Every Pareto optimal allocation can be
decentralized as a competitive equilibrium with transfers, i.e. given
Pareto optimal allocation x , we can find a price vector p and
transfers τi such that given the initial endowments and transfers, x is
a competitive equilibrium.
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Exchange Economy with Infinitively-Lived Agents Setting

Exchange Economy with Infinitively-Lived Agents

• In our static exchange economy agents live for a single period.

• In this section we will analyze model economies where they live
forever.

• Time discrete, infinite, finite number of agents N, only one
consumption good.

• The consumption good is not storable.

• Agents have deterministic endowments w i = {w i
t}∞t=0
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Exchange Economy with Infinitively-Lived Agents Setting

Exchange Economy with Infinitively-Lived Agents

• Let c it be consumption of agent i at time t, and let c i = {c it}∞t=0 be a
consumption sequence.

• Agents preferences are given by,

U(c i ) =
∞∑
t=0

βtui (c
i
t),

where β is the discount factor.

• U(c i ) is time separable.
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Exchange Economy with Infinitively-Lived Agents Setting

Exchange Economy with Infinitively-Lived Agents
Market Structures

• We are going to study two system of markets:

1. Arrow-Debreu structure with complete markets all trade takes place at
time 0.

2. Sequential trading structure with one period securities.

• These two structures will entail different assets and timing of trades
but have identical consumption allocations.
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Exchange Economy with Infinitively-Lived Agents Arrow-Debreu

Arrow-Debreu Markets

• There is a market at time 0 where agents can buy and sell goods of
different time periods.

• There is a price for every period’s good.

• We assume that all contracts that are agreed at time 0 are honored.

• The consumer therefore faces a single budget constraint:

∞∑
t=0

ptc
i
t ≤

∞∑
t=0

ptw
i
t

• We call this market arrangement, Arrow-Debreu markets.

• We normalize p0 = 1 (goods in period 1 are the numeraire)
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Exchange Economy with Infinitively-Lived Agents Arrow-Debreu

Arrow-Debreu Equilibrium

• Definition: sequence of allocation c i = {c it}∞t=0 for each i , and a
sequence of prices p = {pt}∞t=0 such that:

1. Given p, c i solves the agent i ’s maximization problem for each i :

max
c i

∞∑
t=0

βtui (c
i
t),

s.t.
∞∑
t=0

ptc
i
t ≤

∞∑
t=0

ptw
i
t

2. Markets clear for each t:

n∑
i=1

c it =
n∑

i=1

w i
t
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Exchange Economy with Infinitively-Lived Agents Arrow-Debreu

Arrow-Debreu Equilibrium

• The equilibrium allocations are characterized by:

1. Consumer’s FOCs:

βt ∂ui (c
i
t)

∂c it
= µipt , for each i and each t

2. Individual’s budget constraints

∞∑
t=0

ptc
i
t =

∞∑
t=0

ptw
i
t

3. Aggregate resource constraint:

n∑
i=1

c it =
n∑

i=1

w i
t
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Exchange Economy with Infinitively-Lived Agents Arrow-Debreu

Arrow-Debreu Equilibrium
Intertemporal optimization

• From FOCs:

βt ∂ui (c
i
t)

∂c it

βt+1
∂ui (c

i
t+1)

∂c it+1

=
pt
pt+1

Intertemporal optimization conditions:

∂ui (c
i
t)

∂c it
= β

pt
pt+1

∂ui (c
i
t+1)

∂c it+1

(1)

• The consumer allocates her resources optimally such that the
marginal cost of reducing time-t consumption today equals the
marginal benefit of increasing time-t+1 consumption tomorrow taking
into account the discount factor and price dynamics.
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Exchange Economy with Infinitively-Lived Agents Arrow-Debreu

Arrow-Debreu Equilibrium

• From FOCs:

∂ui (c
i
t)

∂c it

∂uj(c
j
t )

∂c jt

=
µi

µj

• Therefore the ratio of marginal utilities across two agents is constant
across time.
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Exchange Economy with Infinitively-Lived Agents Arrow-Debreu

Arrow-Debreu Equilibrium
• Imagine that

∑n
i=1 wit = W constant through time.

• Then the aggregate ressource constraint can be written as:

N∑
i=1

(uic)
−1

(λi

λj
ujc(c

j
t )
)
= W

• As W is invariant, cjt must be invariant too and therefore equation 1
becomes :

pt+1 = βpt

pt = βtp0

pt = βt w.l.o.g.

• Prices completely offset individuals impatience to induce them to
maintain a constant consumption level.

Equilibrium with Complete Markets Jesús Bueren 23



Exchange Economy with Infinitively-Lived Agents Pareto Optimality of the Equilibrium

Arrow-Debreu Equilibrium
Pareto Optimality of the Equilibrium

• Proposition: Any Arrow-Debreu equilibrium is Pareto optimal.

• Sketch of the proof:
- Assume, it is not pareto optimal; there exists another feasible
allocation c̃ such that

u(c̃ i ) ≥ u(c i ) ∀ i
u(c̃ j) > u(c j) for at least one j

- This implies that
∞∑
t=0

pt c̃
j
t >

∞∑
t=0

ptc
j
t

- Given that other individuals are on their budget set, adding across
individuals and time:

∞∑
t=0

pt

N∑
i=1

c̃ it >
∞∑
t=0

pt

N∑
i=1

c it
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Exchange Economy with Infinitively-Lived Agents Pareto Optimal Allocation

Pareto Optimal Allocation

• As before, we can characterize characterize the set of Pareto optimal
allocations as solutions to the following planner’s problem:

max
{c it}∞t=0

∞∑
t=0

n∑
i=0

αiβ
tui (c

i
t)

s.t.
n∑

i=1

c it =
n∑

i=1

w i
t , for all t
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Exchange Economy with Infinitively-Lived Agents Pareto Optimal Allocation

Pareto Optimal Allocation

• The solution to this problem is characterized by the following FOCs:

αiβ
t ∂ui (c

i
t)

∂c it
= πt , for all i and t,

where πt is the Lagrange multiplier on the time-t constraint.

• Given α, allocations that solves the planner’s problem are Pareto
optimal.
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Exchange Economy with Infinitively-Lived Agents Pareto Optimal Allocation

Pareto Optimal Allocation

• In order to decentralize the Pareto optimal allocation, we use
Lagrange multiplier as prices and transfer resources among consumers
according to:

τi (α) =
∞∑
t=0

πt(α)[c
i
t(α)− w i

t ],

where c it(α) is the pareto optimal allocation of goods.

• We can use this framework to compute the Arrow-Debreu equilibrium
by finding α∗, such that τi (α

∗) = 0 for all i

▶ The πt(α
∗) are the Arrow-Debreu prices and allocation c it are the

Arrow-Debreu allocations.
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Exchange Economy with Infinitively-Lived Agents Sequential Equilibrium

Sequential Equilibrium
Setup

• Our previous analysis was built on Arrow-Debreu markets where all
trade takes place at time-0 market.

• Suppose now that trades takes place in spot markets that open every
period.

• Hence, at time t; agents only trade time-t goods in a spot market.

• If agents can only trade time-t good at time t; and there are no credit
arrangements, then this economy would look like a sequence of static
exchange economies.
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Exchange Economy with Infinitively-Lived Agents Sequential Equilibrium

Sequential Equilibrium
Setup

• With spot markets we need a credit mechanism that will allow agents
to move their resources between periods.

• Therefore, we will assume that there is a one period credit market
that works as follows:

▶ Each period, agents can borrow or lend in this one period credit
market.

▶ Let rt be the interest rate on time-t borrowing/lending.
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Exchange Economy with Infinitively-Lived Agents Sequential Equilibrium

Sequential Equilibrium
Individual Problem

• Given a sequence of prices {rt}∞t=0, the agent i ’s problem can be
written as:

max
{c it ,l it}∞t=0

∞∑
t=0

βtui (c
i
t)

s.t. c i0 + l i1 = w i
0

c i1 + l i2 = w i
1 + (1 + r1)l

i
1

. . .

c it + l it+1 = w i
1 + (1 + rt)l

i
t
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Exchange Economy with Infinitively-Lived Agents Sequential Equilibrium

Sequential Equilibrium
No-Ponzi Condition

• How can we make sure that agents don’t borrow more than what they
can honor?

• We are interested in specifying a borrowing limit that prevents Ponzi
schemes, yet is high enough so that household are never constrained
in the amount they can borrow.

• We need to impose an extra condition:

In t=0: l i1 = w i
0 − c i0

In t=1: l i2 = w i
2 + (1 + r1)w

i
0 − c i1 − (1 + r1)c0

...

In t: l it+1 = w i
t +

t−1∑
s=0

t∏
j=s+1

(1 + rj)w
i
s − c it −

t−1∑
s=0

t∏
j=s+1

(1 + rj)cs

Equilibrium with Complete Markets Jesús Bueren 31



Exchange Economy with Infinitively-Lived Agents Sequential Equilibrium

Sequential Equilibrium
No-Ponzi Condition

• Dividing both sides by
∏t

j=1(1 + rj):

l it+1∏t
j=1(1 + rj)

=
t∑

s=1

ws∏s
j=1(1 + rj)

+ w0

−
t∑

s=1

cs∏s
j=1(1 + rj)

− c0

• Which is simply the time-0 present value of agent’s resources minus
consumption.

• We need to impose a condition on it such that agents don’t run a
game where they keep borrowing and never pay back:

lim
t→∞

l it+1∏t
s=1(1 + rs)

= 0
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Exchange Economy with Infinitively-Lived Agents Sequential Equilibrium

Sequential Equilibrium
No-Ponzi Condition

• The weakest possible debt limit would be to impose the natural debt
limit:
▶ It has to be feasible for the consumer to repay her debt at every time t.

l it+1 ≥ −
∞∑

s=t+1

ws∏s
j=t+1(1 + rj)

+ wt

▶ At every time t the value of her debt cannot exceed the discounted
value of present and future endowments.
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Exchange Economy with Infinitively-Lived Agents Sequential Equilibrium

Sequential Equilibrium
FOCs

• From FOCs we get:

βt ∂ui (c
i
t)

∂c it
= λt

λt = (1 + rt+1)λt+1

• Combining them,

∂ui (c
i
t)

∂c it
= (1 + rt+1)β

∂ui (c
i
t+1)

∂c it+1
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Exchange Economy with Infinitively-Lived Agents Sequential Equilibrium

Sequential Equilibrium

• Definition A sequential market equilibrium is a sequence of
allocations c i = {c it}∞t=0 and a sequence of lending/borrowing
decisions l i = {l it}∞t=0 for each i , and sequence of prices r = {rt}∞t=0
such that

1. Given r , c i and l i solves agent’s maximization problem

2. Markets clear.

n∑
i=1

w i
t =

n∑
i=1

c it for all t

n∑
i=1

l it = 0 for all t
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Exchange Economy with Infinitively-Lived Agents Sequential Equilibrium

Sequential Equilibrium

• Proposition If {ct , pt}∞t=0 is a competitive Arrow-Debreu equilibrium
allocation, then letting:

rt+1 =
pt
pt+1

− 1

{ct , rt}∞t=0 is a competitive equilibrium with sequential markets.

• Sketch of the proof: If rt+1 =
pt
pt+1

− 1, ct satisfies FOCs, markets

clear and the no-ponzi condition is satisfied.
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Stochastic Endowments

Stochastic Endowments

• So far we have analyzed economies where everything was certain.

• However, uncertainty is an important element in many economic
activities.

• We are going to extend the previous analysis to a stochastic
environment.
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Stochastic Endowments

Stochastic Endowments
Setup

• Time discrete, infinite, N agents, one consumption good.

• Endowments depend on the history of states in the economy (st)
which is uncertain: w i (st)

• We will assume that state of the economy at a given time t (st) can
take values from a given finite set S .
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Stochastic Endowments

Arrow-Debreu Market
Setup

• We assume there is a time-0 Arrow-Debreu market where agents can
buy and sell goods of different histories (st = {s1, . . . , st}).

▶ Agents at time 0 choose a contingent plan where they decide her
consumption for every date and every possible realization of the history.

c i = {c it(st)}∞t=0
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Stochastic Endowments

Arrow-Debreu Market
Agent Problem

• Agents maximize

U(c i ) =max
c i

∞∑
t=0

∑
st

βtπ(st |s0)u(c it(st))

s.t
∞∑
t=0

∑
st

pt(s
t)c it(s

t) =
∞∑
t=0

∑
st

pt(s
t)w i

t (s
t)
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Stochastic Endowments

Arrow-Debreu Equilibrium

• Definition: An Arrow-Debreu equilibrium in this economy is a
sequence of consumption plans c i for each i , and a sequence of
history dependent prices p such that given s0,

1. Given p, c i solves agent’s i maximization problem.

2. Market clears

n∑
i=1

c it(s
t) ≤

n∑
i=1

w i
t (s

t), for each t and st
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Stochastic Endowments

Arrow-Debreu Equilibrium
FOCs

• By FOCs we get:

βtπ(st |s0)
∂u(c it(s

t))

∂c it(s
t)

= λpt(s
t)

• Therefore the intertemporal FOC becomes:

∂u(c it(s
t))

∂c it(s
t)

= β
pt(s

t)

pt+1(st+1)
π(st+1|st)

∂u(c it+1(s
t+1))

∂c it+1(s
t+1)

Equilibrium with Complete Markets Jesús Bueren 42



Stochastic Endowments

Pareto Optimal Allocations

• As in the case without uncertainty, we can can characterize the set of
Pareto optimal allocations as solutions to the following planner’s
problem:

max
{c it}∞t=0

∞∑
t=0

∑
st

n∑
i=0

αiπ(s
t |s0)βtui (c

i
t)

s.t.
n∑

i=1

c it(s
t) =

n∑
i=1

w i
t (s

t), for all t

• Then, we could compute the competitive equilibrium by finding the
set of α’s such that the transfer function that you would need to
sustain this equilibrium is 0 for all individuals.
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Stochastic Endowments

Pareto Optimal Allocations
Perfect Insurance

• Note also that at time-t, history st consumption of any two agents is
related by:

u′(c it(s
t))

u′(c jt (s
t))

=
αj

αi

• Definition: An allocation has perfect consumption insurance if the
ratio of marginal utilities between two agents is constant across time
(independent of the state of the world).
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Stochastic Endowments

Pareto Optimal Allocations
Irrelevance of History

• From previous equation,

c it(s
t) = u′−1

(
αj

αi
u′(c jt (s

t))

)
• Summing across individuals and using aggregate resources constraint:

I∑
i=1

w i
t (s

t) =
I∑

i=1

u′−1

(
αj

αi
u′(c jt (s

t))

)

which is one equation on one unknown c jt (s
t)

• The Pareto optimal allocations {c it}∞t=0 only depends on the
aggregate state of the economy and not on the whole history.
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Stochastic Endowments

Pareto Optimal Allocations
Irrelevance of History

• Assume u(c) =
c1−σ

1− σ
, then, we have:

c it(s
t) = c jt (s

t)

(
αi

αj

)1/σ

• Given the feasibility constraint:

I∑
i=1

c jt (s
t)

(
αi

αj

)1/σ

= c jt (s
t)

(
1

αj

)1/σ I∑
i=1

α
1/σ
i = W (st)

which allows us to find

c jt (s
t) =

α
1/σ
j∑I

i=1 α
1/σ
i

Wt(s
t)

Agent j consumes a constant fraction of total endowment in every
period.
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Stochastic Endowments

Pareto Optimal Allocations
Irrelevance of History

• We can write the last expression in logs as:

log c jt (s
t) = log θj + logWt(s

t)

or in first-differences, we could estimate using CEX data:

∆ log c jt (s
t) = α1∆ logWt(s

t) + α2∆ logw j
t (s

t) + ϵj ,t

• We get α2 > 0: excess sensitivity of consumption
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Stochastic Endowments Sequential Markets

Sequential Markets
Setup

• Suppose now that trade takes place sequentially in spot markets each
period.

• Agents can buy and sell one period contingent claims or Arrow
securities each period.

- Securities that pay 1 unit of good at time t + 1 for a particular
realization of st+1 tomorrow.

- Let Q(st+1|st) be the price of such contract at time t.

- Let ait+1(st+1, s
t) be the purchase of agent i of such contract.

- Period t budget constraint is given by:

c i (st) +
∑
st+1

ait+1(s
t , st+1)Q(st , st+1) = w i

t (s
t) + at(s

t)

• Note that although the agent buys a portfolio of Arrow securities at
time t, at t + 1 only one of these securities will deliver returns.
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Stochastic Endowments Sequential Markets

Sequential Equilibrium
No-Ponzi Condition

• With a sequential market structure we again need to put a debt limit
to rule out Ponzi schemes.

• A natural debt limit Ai
t(s

t) for an agent can be calculated as

pt(s
t)Ai

t(s
t) =

∞∑
τ=t

∑
sτ |st

pτ (s
τ )w i

t (s
τ ),

Debt limit: − Ai
t(s

t) ≤ at(s
t)

which means that the current value of your future endowments cannot
be larger than the value of your debt using Arrow-Debreu prices.
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Stochastic Endowments Sequential Markets

Sequential Equilibrium
• Definition: A sequential market equilibrium in this economy is prices
for Arrow securities Q(st , st+1) for all t and for all st , allocations
c it(s

t) and ait+1(s
t , st+1) for all agents, all t and all st such that

1. For each i , given Q(st , st+1), c
i
t(s

t) and ait+1(st+1, s
t) solve

max
c it (s

t),ait+1(st+1,st)

∞∑
t=0

∑
st

βtπ(st |s0)u(c i (st))

s.t. c it(s
t) +

∑
st+1

ait+1(s
t , st+1)Q(st , st+1) = w i

t (s
t) + at(s

t)

ait+1(s
t , st+1) ≥ −Ai

t+1(s
t+1)

2. Markets clear:

Agg. ressource constraint:
n∑

i=1

w i
t (s

t) =
n∑

i=1

c it(s
t) for all st

Securities are in zero net supply:
n∑
i

ait+1(s
t , st+1) = 0 for all st and st+1
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Stochastic Endowments Sequential Markets

Sequential Equilibrium
FOCs

• By FOCs we get:

Q(st , st+1)u
′(c it(s

t)) = βπ(st+1|st)u′(c it+1(s
t+1))

from which we can see that if we let:

Q(st , st+1) =
pt+1(s

t+1)

pt(st)

the Arrow-Debreu and the sequential equilibrium coincide.
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