
Dynamic Optimization

Jesús Bueren

EUI

Dynamic Optimization Jesús Bueren 1



Introduction

Dynamic Optimization

• In this chapter we are going to characterize solutions to dynamic
optimization problems

• In order to solve them, we are going to introduce discrete dynamic
programming.

• Along our way, we are going to revise some mathematical concepts
covered by Villanacci.

• References: The PhD Macro Book (Ch 4), Acemoglu (Ch 6), and
SLP (Ch 4).

Dynamic Optimization Jesús Bueren 2



Providing Intuition Finite Horizon Dynamic Optimization

Motivating the Recursive Formulation
A Cake Eating Problem

• We will go over a very simple dynamic optimization problem.

• Suppose that you are presented with a cake of size W1.

• At each point in time t = 1, 2, . . . ,T , you can eat some of the cake
but must save the rest.

• Let ct be your consumption at time t and u(ct) represent the flow of
utility.

• u twice differentiable, strictly increasing, strictly concave,
lim
c→0

u′(c) = ∞.

• Discount factor: 0 < β < 1

Dynamic Optimization Jesús Bueren 3



Providing Intuition Finite Horizon Dynamic Optimization

The Sequential Formulation
A Cake Eating Problem

• The agent is solving:

max
{ct ,Wt+1}Tt=0

T∑
t=0

βtu(ct)

s.t. ct +Wt+1 = Wt ∀t
WT+1 ≥ 0

• The Lagrangian associated to this problem is given by:

L =
T∑
t=0

βtu(ct) +
T∑
t=0

λt(Wt − ct −Wt+1) + ϕWT+1

Dynamic Optimization Jesús Bueren 4



Providing Intuition Finite Horizon Dynamic Optimization

The Sequential Formulation
A Cake Eating Problem

• FOCs:

βtuc(ct) = λt

λt = λt+1

λT = ϕ

ϕ ≥ 0 with ϕWT+1 = 0 ⇒ βTuc(ct)WT+1 = 0

u′(ct) = βu′(ct+1) ∀t ∈ [0,T − 1]

WT+1 = 0

• With the set of T intertemporal equations (euler equations), an initial
condition and a terminal condition

Dynamic Optimization Jesús Bueren 5



Providing Intuition Finite Horizon Dynamic Optimization

The Recursive Formulation
A Cake Eating Problem

• In order to solve finite-horizon dynamic programming problems, we
are going to proceed by backwards induction.

• For t = T , given the properties of u and the constraint, the optimal
solution is given by:

cT = WT

u(cT ) = u(WT )

Dynamic Optimization Jesús Bueren 6



Providing Intuition Finite Horizon Dynamic Optimization

The Recursive Formulation
A Cake Eating Problem

• We define the value function at time T for the problem at time T as:

VT (WT ) = max
cT

u(cT )

cT +WT+1 = WT

• The optimal cake-saving decision is thus:

gT (WT ) = 0

and the value function is given by:

VT (WT ) = u(WT )

Dynamic Optimization Jesús Bueren 7



Providing Intuition Finite Horizon Dynamic Optimization

The Recursive Formulation
A Cake Eating Problem

• Now let’s go to t = T − 1 given that we have solved the problem for
t = T and define VT−1.

VT−1(WT−1) = max
cT−1,cT ,WT ,WT+1

u(cT−1) + βu(cT )

s.t. cT−1 +WT = WT−1

cT +WT+1 = WT

• Given that we already we know what is optimal to do in the next
period, we can simplify the problem at T − 1 as:

VT−1(WT−1) = max
cT−1,WT

u(cT−1) + βVT (WT )

s.t. cT−1 +WT = WT−1

Dynamic Optimization Jesús Bueren 8



Providing Intuition Finite Horizon Dynamic Optimization

The Recursive Formulation
A Cake Eating Problem

• Le’s write the optimality conditions as:

u′(cT−1) = βV ′
T (WT )

u′(cT−1) = βu′T (WT )

• The solution coincides with the sequential formulation in the last
period.

• We are in good track but what about previous periods?

Dynamic Optimization Jesús Bueren 9



Providing Intuition Finite Horizon Dynamic Optimization

The Recursive Formulation
A Cake Eating Problem

• Since it’s going to be useful let’s first derive the value of
V ′
T−1(WT−1) given the optimal cake saving decision gT−1(WT−1)

obtained from the previous FOC.

VT−1(WT−1) =u(WT−1 − gT−1(WT−1)) + βVT (gT−1(WT−1))

∂VT−1(WT−1)

∂WT−1
=uc(cT−1)− uc(cT−1)

∂gT−1(WT−1)

∂WT−1
+

β
∂gT−1(WT−1)

∂WT−1

VT (WT )

∂WT

∂VT−1(WT−1)

∂WT−1
=uc(cT−1) +

∂gT−1(WT−1)

∂WT−1

(
β
VT (WT )

∂WT
− uc(cT−1)

)
∂VT−1(WT−1)

∂WT−1
=uc(cT−1)

Dynamic Optimization Jesús Bueren 10



Providing Intuition Finite Horizon Dynamic Optimization

The Recursive Formulation
A Cake Eating Problem

• At T − 2 the problem can be written as:

VT−2(WT−2) = max
cT−2,WT−1

u(cT−2) + βVT−1(WT−1)

s.t. cT−2 +WT−1 = WT−2

• With FOCs:

uc(cT−2) = β
∂VT−1(WT−1)

∂WT−1
= βuc(cT−1)

Dynamic Optimization Jesús Bueren 11



Providing Intuition Finite Horizon Dynamic Optimization

Practical Dynamic Programming
Finite Horizon

• Define a discretized grid of cake: W ∈ {W 1, . . . ,W nkk}.

• Define VT (WT ) for each W i
T in the cake grid: VT (W

i
T ) = u(W i

T )
and gT (W

i
T ) = 0 ∀ i ∈ {1, . . . , nkk}

• Go to the previous period. We want to find gT−1(WT−1)

• Grid search: For each W i
T−1, i ∈ {1, . . . , nkk}, the agent has i

possible cake saving decisions W j
T where j ∈ {1, . . . , i}.

• Compute the value for each j :

VT−1(W
i
T−1,W

j
T−1) = u(W i

T−1 −W j
T ) + βV (Wj)

and select the W j
T−1 which achieves the highest utility: j∗, set

gT−1(W
i
T−1) = W j∗

T and VT−1(W
i
T−1) = VT−1(W

i
T−1,W

j∗

T−1)

• Move to period T − 2

Dynamic Optimization Jesús Bueren 12



Providing Intuition Infinite Horizon Dynamic Optimization

Infinite Horizon
A Cake Eating Problem

• Suppose for the cake-eating problem, we allow the horizon to go to
infinity.

• The main advantage of an infinite horizon is that the agent problem
becomes stationary: the maximization problem at date t is exactly
the same as in period t + 1

• Unlike in finite horizon case, we don’t have a terminal condition in the
cake eating problem we will thus need to impose a transversality
condition:

lim
t→∞

βtuc(ct)Wt+1 = 0

if discounted marginal utility is positive, the amount of cake needs to
go to zero to rule out over-accumulation

Dynamic Optimization Jesús Bueren 13



Providing Intuition Infinite Horizon Dynamic Optimization

Infinite Horizon
A Cake Eating Problem

• One can consider solving the infinite horizon sequence given by:

max
{ct ,Wt+1}∞t=0

∞∑
t=0

βtu(ct)

s.t. ct +Wt+1 = Wt + y ∀ t

lim
t→∞

βtuc(ct)Wt+1 = 0

• Written in recursive form:

V (Wt) = max
{ct ,Wt+1}

u(ct) + βV (Wt+1) (1)

s.t. ct +Wt+1 = Wt + y

lim
t→∞

βtV (Wt) = 0 (2)

The transversality condition (2) is frequently avoided because
assuming V being bounded, its is satisfied for β < 1.

Dynamic Optimization Jesús Bueren 14



Providing Intuition Infinite Horizon Dynamic Optimization

Infinite Horizon
A Cake Eating Problem

• Equation (1) is referred as the Bellman equation.

• It is a functional equation: the unknown represents as function.

• By FOCs:

uc(ct) = β
∂V (Wt+1)

∂Wt+1
(3)

• Let’s define g(W ) the optimal savings function associated with
equation (1):

g(Wt) =arg max
Wt+1

u(Wt + y −Wt+1) + βV (Wt+1)

V (Wt) =u(Wt + y − g(Wt)) + βV (g(Wt))

Dynamic Optimization Jesús Bueren 15



Providing Intuition Infinite Horizon Dynamic Optimization

Infinite Horizon
A Cake Eating Problem

• Provided that g is differentiable we can now compute:

∂V (Wt)

∂Wt
= uc(ct) +

∂g(Wt)

∂Wt

(
β
∂V (Wt+1)

∂Wt+1
− uc(ct)

)
∂V (Wt)

∂Wt
= uc(ct) ⇒

∂V (Wt+1)

∂Wt+1
= uc(ct+1)

• Then we can write equation (3) as:

uc(ct) = βuc(ct+1)

Dynamic Optimization Jesús Bueren 16



Providing Intuition Infinite Horizon Dynamic Optimization

Infinite Horizon
A Cake Eating Problem

• Under what conditions V exists? Is it unique?

• How to find V in the infinite horizon case?

• Is g a function or a correspondence? Is it differentiable?

Dynamic Optimization Jesús Bueren 17



The General Problem

The Dynamic Programming Approach

• Buiding on the intuition gained from the cake eating problem, we now
consider a more formal treatment of the dynamic programming
approach to answer the previous questions.

• We begin with the nonstochastic case and then add uncertainty to
the formulation.

Dynamic Optimization Jesús Bueren 18



The General Problem

The Dynamic Programming Approach

• Consider the infinite horizon optimization problem of an agent with
payoff function σ̃(st , ct).

• state vector: st ; control vector: ct .

• Transition equation: st+1 = τ̃(st , ct).

• The state summarizes all the information from the past that is needed
to make a forward-looking decision.

• s ∈ S and c ∈ C(s).

• Let β be the discount factor and assume 0 < β < 1.

Dynamic Optimization Jesús Bueren 19



The General Problem

The Dynamic Programming Approach
• The sequential problem can be written as:

max
{ct}∞t=0

∞∑
t=0

βt σ̃(st , ct)

s.t. st+1 = τ̃(st , ct)

ct ∈ C̃(st)

• We can rewrite the problem as Henriette and Matteo prefer by
imposing the law of motion of the state:

V ∗(s0) = max
{st+1}∞t=0

∞∑
t=0

βtσ(st , st+1)

s.t. st+1 ∈ C(st),

Where V ∗ denotes the highest possible value the the objective
function can reach

Dynamic Optimization Jesús Bueren 20



The General Problem

• The basic idea of dynamic programming is to turn the sequential
problem into a functional equation:

V (s) = max
s′∈C(s)

σ(s, s ′) + βV (s) (4)

• Instead of choosing a sequence {st}∞t=0, we choose a policy, which
determines the control s ′ as a function of the state s.

• Given that V appears both in both sides of the equation 4 and thus it
is defined recursively.

• Equation 4 is also referred as the Bellman equation after Richard
Bellman, who was the first to introduce the dynamic programming
formulation.

• A solution to the functional equation is thus a fixed point.

Dynamic Optimization Jesús Bueren 21



The General Problem

Math Review
Brouwer’s Fixed Point Theorem

• Let F be a nonempty compact (closed and bounded) convex set.

• Let T be a continuous function that maps each point x ∈ F to itself.

• Then T has a fixed point x∗ ∈ F such that T (x∗) = x∗

• More questions:

- To which set does V belong to?

- Does the operator defined in the functional equation map each element
of that set to itself?

- Is the fixed point unique?

Dynamic Optimization Jesús Bueren 22



The General Problem

Math Review
What is a Contraction Mapping?

• Let (M, d) be a metric space where M is a set and d is a metric.

A metric space is a set and a function such that for all x , y , z ∈ S :

1. d(x , y) ≥ 0, with equality iff x = y
2. d(x , y) = d(y , x)
3. d(x , y) ≤ d(x , z) + d(z , y)

• Let T : M → M be an function mapping M into itself.

• If there exists a β ∈ (0, 1) such that,

d(Tz1,Tz2) ≤ βd(z1, z2) ∀ z1, z2 ∈ S

then T is a contraction mapping with modulus β.

• In other words, a contraction mapping brings elements of the space
M uniformly closer to one another.

Dynamic Optimization Jesús Bueren 23



The General Problem

Math Review
Contraction Mapping Theorem

Let (M, d) be a complete metric space and suppose T : M → M is
a contraction mapping.

A metric space is complete if every Cauchy sequence is a convergent
sequence.

- A sequence {xn}∞n=0 is a Cauchy sequence if for all ϵ > 0 there exists an
N ∈ N such that for all l , n > N, d(xl , xn) < ϵ

- A sequence {xn}∞n=0 is a convergent sequence to x0 ∈ M if for all ϵ > 0,
there exist here exists an N ∈ N such that for any n > N, d(xn, x0) < ϵ

• Then, T has a unique fixed point ẑ and for any z0 ∈ M, and any
n ∈ N we have d(T nz0, ẑ) ≤ βnd(z0, ẑ) .

• That is there exists a unique ẑ ∈ M such that

Tẑ = ẑ

and regardless of the starting guess z0, the sequence {T nz0}∞n=0

converges to ẑ .

Dynamic Optimization Jesús Bueren 24



The General Problem

Match Review
Blackwell’s Sufficient Conditions for a Contraction

• Let s ∈ S and (M, d) be the metric space where M is the set of
bounded function equipped with the sup norm.

• Let T : M(s) → M(s) satisfying:

1. Monotonicity: If W (s) ≥ Q(s), for all s ∈ S, then TW (s) ≥ TQ(s).

2. Discounting: for any constant k there exists β̃ ∈ [0, 1) such that
T (W + k)(s) ≤ T (W )(s) + βk .

• Then T is a contraction.

Dynamic Optimization Jesús Bueren 25



The General Problem

Recursive Formulation

• In order to apply the Blackwell sufficient conditions, we need V to
belong to the set of bounded functions.

• For this to be true, we need some assumption on the primitive objects.

Dynamic Optimization Jesús Bueren 26



The General Problem

Recursive Formulation

• σ(st , st+1) needs to be bounded so that it does not yield infinite
returns: we cannot compare two choices of st+1 that deliver infinite
value.

• With β ∈ (0, 1) and bounded σ, the V will be bounded for the
problems that we will see in this course.

- Problems might arise in models of growth: you would need growth in
the return function to be “smaller” than the rate of discounting such
that discounted returns are bounded.

• This assumption will allow us to define the set of V : the set of
continuous bounded functions.

• Equipped with the supremum norm forms a complete metric space.

Dynamic Optimization Jesús Bueren 27



The General Problem

Recursive Formulation

• If σ is continuous and C is nonempty and compact (closed and
bounded).

⇒ Unique value function satisfying the functional equation and
therefore it is possible to find V (x) by an iterative process

1. Select any initial value V0(s) ∀s ∈ S.

2. Define a sequence of functions:

Vn(x) = max
s′∈C(s)

σ(s, s ′) + βVn−1(s)

3. The sequence {V0,V1, . . . ,Vn}∞n=0 converges to V

Dynamic Optimization Jesús Bueren 28



The General Problem

Recursive Formulation

• Even if V is unique it could be that the policy associated could be a
correspondence unless we put further restrictions of σ and C:

1. σ(s, s ′): strictly concave, continuous, and differentiable.

2. C(s): convex

⇒ We have a continuous and differentiable policy function

• The Enveloppe theorem holds:

∂v(s)

∂s
=

∂σ(s, s ′)

∂s

Dynamic Optimization Jesús Bueren 29



The General Problem

Is T a Contraction?
Blackwell’s Sufficient Conditions: Monotonicity

• Let Q(s) ≤ W (s) ∀s ∈ S.

• Let ϕQ(s) be the policy function obtained from:

ϕQ(s) = arg max
s′∈C(s)

σ(s, s ′) + βQ(s ′)

• Then,

TQ(s) = σ(s, ϕQ(s)) + βQ(ϕQ(s)) ≤ σ(s, ϕQ(s)) + βW (ϕQ(s))

= max
s′∈C(s)

σ(s, s ′) + βW (s ′) = TW (s)

Dynamic Optimization Jesús Bueren 30



The General Problem

Is T a Contraction?
Blackwell’s Sufficient Conditions: Discounting

• This property is easy to verify in the dynamic programming problem:

T (W + k)(s) = max
s′∈C(s)

σ(s, s ′) + β(W (s ′) + k)

= TW (s) + βk

Dynamic Optimization Jesús Bueren 31



The Neoclassical Growth Model

The Neoclassical Growth Model

• In 1928 Frank Ramsey, a young mathematician, posed the problem:

“How much of its income should a nation save?”

and developed a dynamic model to answer this question.

• Economic agent (a social planner) producing output from labor and
capital who must decide how to split production between
consumption and capital accumulation.

Dynamic Optimization Jesús Bueren 32



The Neoclassical Growth Model The Planner’s Problem

The Neoclassical Growth Model
The Planner’s Problem

• Time is discrete.

• Production is given by yt = f (kt) where kt is capital. f satisfies inada
conditions.

• The planner’s problem is given by:

max
{ct}∞t=0{kt+1}∞t=0

∞∑
t=0

βtu(ct)

s.t. ct + kt+1 ≤ f (kt) + (1− δ)kt ∀t

Dynamic Optimization Jesús Bueren 33



The Neoclassical Growth Model The Planner’s Problem

The Neoclassical Growth Model
The Planner’s Problem

• Now let’s write the planner’s problem in recursive form:

V (k) = max
k ′∈[0,f (k)+(1−δ)k]

u
(
f (k) + (1− δ)k − k ′

)
+ βV (k ′)

• The solution is characterized by:

uc(c) = β
∂V (k ′)

∂k ′
= β

(∂f (k ′)
∂k ′

+ 1− δ
)
uc(c

′)

Dynamic Optimization Jesús Bueren 34



The Neoclassical Growth Model The Planner’s Problem

The Neoclassical Growth Model
The Planner’s Problem

• In the one sector growth model we define the operator T to be:

TV (k) = max
k ′∈[0,f (k)+(1−δ)k]

{u(f (k) + (1− δ)k − k ′) + βV (k ′)}

• We want to argue that this operator has as unique fixed point using
the contraction mapping theorem.

• Thus we are going to do it using Blackwell’s sufficient conditions.

Dynamic Optimization Jesús Bueren 35



The Neoclassical Growth Model The Planner’s Problem

The Neoclassical Growth Model
The Planner’s Problem

• Monotonicity:

Let ϕQ(k) = arg max
k ′∈Γ(k)

u(f (k) + (1− δ)k − k ′ + βQ(k ′)

if Q(k) ≤ W (k), for all k

then TQ(k) = u(f (k) + (1− δ)k − ϕQ(k)) + βV (ϕQ(k))}
≤ u(f (k) + (1− δ)k − ϕQ(k)) + βW (ϕQ(k))} ≤ TW (k)

• Discounting:

T (V + a)(k) = max
k ′∈Γ(k)

{u(f (k) + (1− δ)k − k ′) + β(V (k ′) + a)}

=TV (k) + βa

Dynamic Optimization Jesús Bueren 36



The Neoclassical Growth Model The Planner’s Problem

Solving the problem numerically
Discrete State Methods

• There exists a variety of numerical methods to solve dynamic
programming problems like the Ramsey problem (projection,
perturbation, parameterized expectation).

• The need of numerical methods arises from the fact that dynamic
programming problems generally do not have tractable closed form
solutions.

• Because of their simplicity, we are going to focus on discrete-state
space methods.

Dynamic Optimization Jesús Bueren 37



The Neoclassical Growth Model The Planner’s Problem

Solving the problem numerically
Discrete State Methods

• In this case, the value function is a finite dimensional object.

• For instance, if the state space is one dimensional and has elements
S = s1, s1, . . . , sn, the value function is just a vector of n elements
where each element gives the value attained by the optimal policy if
the initial state of the system is sn ∈ S.

• Drawback: curse of dimensionality.

▶ If the the value function of an m-dimensional problem with n different
points in each dimension is an array of nm different elements and the
computation time needed to search this array may be prohibitively high.

Dynamic Optimization Jesús Bueren 38



The Neoclassical Growth Model The Planner’s Problem

Solving the problem numerically
Value Function Iteration

• Given that Blackwell sufficient conditions hold, the can use the
following pseudo-code for finding the value function:

1. Make a guess for V0 for all values of capital.

2. Apply the operator T and recover V1 = TV0

3. Compute distance between V0 and V1.

3.1 If V1 and V0 are close enough, stop.

3.2 Otherwise set V0 = V1 and go back to 2.

• Once the algorithm has converged, you can simulate the path for
capital of an economy with an initial capital endowment.

Dynamic Optimization Jesús Bueren 39



The Neoclassical Growth Model The Planner’s Problem

Solving the problem numerically
Value Function Iteration

• Define a grid with N points of capital between [k , k̄] around the
steady state level of capital.

• Define a value of V0 for all the points in this grid. Let’s say V0 = 0
for all k.

• Given this V0, we can generate a vector for each level of capital ki
which elements are:

u(f (ki ) + (1− δ)ki − k1) + βV0(k1)
u(f (ki ) + (1− δ)ki − k2) + βV0(k2)

...
u(f (ki ) + (1− δ)ki − kN) + βV0(kN)



Dynamic Optimization Jesús Bueren 40



The Neoclassical Growth Model The Planner’s Problem

Solving the problem numerically
Value Function Iteration

• TV0(k) can be approximated by the maximum value of the elements
of this vector.

• Looping through all values of i ∈ [0,N] we will recover V1.

• Given V1 we can recover V2.

9.5 10 10.5 11 11.5 12 12.5
0

0.5

1

1.5

2

2.5

V
0

V
1

V
2

Dynamic Optimization Jesús Bueren 41



The Neoclassical Growth Model The Planner’s Problem

Solving the problem numerically
Value Function Iteration

• We iterate until Vg and Vg+1 are sufficiently close

9.5 10 10.5 11 11.5 12 12.5
13.5

14

14.5

15
V

-10

V
-2

V
final

Dynamic Optimization Jesús Bueren 42



The Neoclassical Growth Model The Planner’s Problem

Solving the problem numerically
Value Function Iteration

• Now that we have V , we need to recover π(k) which is given by:

π(k) = argmax
k ′

{u(k , k ′) + βV (k ′)}

Dynamic Optimization Jesús Bueren 43



The Neoclassical Growth Model The Planner’s Problem

Solving the problem numerically
What do we aim for?

• A policy function:

10 11 12
9.5

10

10.5

11

11.5

12

12.5

policy

45 degree

10 11 12
-0.1

-0.05

0

0.05

0.1

Dynamic Optimization Jesús Bueren 44



The Neoclassical Growth Model The Planner’s Problem

Solving the problem numerically
Evolution of capital

• Given π(k) we can simulate the transition towards the steady state
for any k0 ∈ [k, k̄].

0 10 20 30 40 50 60

10

10.5

11

11.5
Capital

Dynamic Optimization Jesús Bueren 45



The Neoclassical Growth Model Competitive Equilibrium

Competitive Equilibrium
Arrow-Debreu Equilibrium

• We will now define three different ways of decentrilizing the non-
stochastic one-sector growth model.

• A representative household who owns the capital and labor, which she
rents it to firms in exchange of an interest rate rt and wage wt in
units of consumption good a time t per unit of capital rented and
labor used.

• There is a market at time 0 where agents can buy and sell goods of
different time periods.

• We assume that all contracts that are agreed at time 0 are honored.

• There is a price pt for a consumption good at time t relative to
consumption goods at t = 0 (Normalize: pt0 = 1).

Dynamic Optimization Jesús Bueren 46



The Neoclassical Growth Model Competitive Equilibrium

Competitive Equilibrium
Arrow-Debreu Equilibrium

• Consumer’s problem:

max
{ct ,kt+1}∞t=0

∞∑
t=0

βtu(ct)

s.t.
∞∑
t=0

pt(ct + kt+1) =
∞∑
t=0

pt((1 + rt)kt + wt)

• Firm’s problem:

max
kt ,lt

pt(f (kt , lt)− (rt + δ)kt − wt lt)

Dynamic Optimization Jesús Bueren 47



The Neoclassical Growth Model Competitive Equilibrium

Competitive Equilibrium
Arrow-Debreu Equilibrium

Definition
• A competitive equilibrium in this economy is a set of sequence of
prices {pt , rt ,wt}∞t=0 and quantities {ct , kt+1}∞t=0 such that:

1. Given prices, {ct , kt+1}∞t=0 solve the household problem.

2. Given prices, {kt}∞t=0 solve the firms problem.

3. Markets clears:

ct + kt+1 = f (kt) + (1− δ)kt

Dynamic Optimization Jesús Bueren 48



The Neoclassical Growth Model Competitive Equilibrium

Competitive Equilibrium
Sequential Equilibrium

• Suppose now that agents rent capital and labor to firms in return of
rt and wt period by period.

• Consumer problem:

max
{ct ,kt+1}∞t=0

∞∑
t=0

βtu(ct)

s.t. ct + kt+1 = wt + (1 + rt)kt ∀ t

lim
t→∞

kt+1∏t
s=1(1 + rs)

≥ 0

• As the firm’s problem is static, is identical as before.

Dynamic Optimization Jesús Bueren 49



The Neoclassical Growth Model Competitive Equilibrium

Competitive Equilibrium
Sequential Equilibrium

• A sequential market equilibrium is a sequence of prices {rt ,wt}∞t=0
and quantities {ct , kt}∞t=0 such that:

1. {ct , kt+1}∞t=0 solve the household problem.

2. {kt}∞t=0 solve the firms problem.

3. Markets clear:

ct + kt+1 = f (kt) + (1− δ)kt

Dynamic Optimization Jesús Bueren 50



The Neoclassical Growth Model Competitive Equilibrium

Competitive Equilibrium
Recursive Competitive Equilibrium

• Note that when we study dynamic programming approach for solving
infinite horizon problems our focus was on policy functions and not on
optimal sequences.

• In a recursive competitive equilibrium, the quantities and prices are
defined as functions of the state.

• Hence, in a recursive competitive equilibrium both individual decisions
(characterized by a value function and a decision rule) and the prices
will be functions of the state.

Dynamic Optimization Jesús Bueren 51



The Neoclassical Growth Model Competitive Equilibrium

Recursive Competitive Equilibrium
• It is not straightforward to represent the household problem in
recursive form because prices are not constant.
▶ They depend on the aggregate level of capital:

rt = fk(K )− δ

wt = fl(K )

• Therefore the future continuation value will depend not only on how
many assets are left for the next period but also on these prices.

• The idea is to include aggregate capital as a state variable for the
household’s problem.

V (k,K ) =max
c,k ′

{u(c) + βV (k ′,K ′)}

s.t. c + k ′ = w(K ) + (1 + r(K ))k

K ′ = G (K ),

where G (K ) is the agent perceived law of motion of aggregate capital.

Dynamic Optimization Jesús Bueren 52



The Neoclassical Growth Model Competitive Equilibrium

Recursive Competitive Equilibrium
Definition

• A recursive competitive equilibrium is a perceived law of motion
G (K ), a policy function g(k ,K ), a lifetime utility level V (k ,K ), and
a price system r(K ),w(K ) such that

1. V (k ,K ) solves the household problem, and g(k,K ) is the associated
policy function.

2. Prices are competitively determined by firms FOCs.

3. Consistency is satisfied:

G (K ) = g(K ,K )

4. Market clears:

c + G (K ) = F (K ) + (1 + δ)K

• The third condition states that, whenever the individual consumer is
endowed with a level of capital equal to the aggregate level, his own
individual behavior will exactly mimic the aggregate behavior.

Dynamic Optimization Jesús Bueren 53



The Neoclassical Growth Model Competitive Equilibrium

Recursive Competitive Equilibrium
Algorithm

• We could use the following pseudo-code for solving for the RCE:

1. Make a guess of G (K )

1.1 Make a guess for V0 for all values of k and K

1.2 Apply the operator T and recover V1 = TV0 given the guess of G(K)

1.3 If V1 and V0 are close enough, go to 2. Otherwise set V0 = V1 and
back to 1.1

2. From 1.3 recover the policy function g(K ,K ). If g(K ,K ) and G (K )
are close enough, stop. Otherwise set G (K ) = g(K ,K ) and go back to
1.1

Dynamic Optimization Jesús Bueren 54



Uncertainty

Adding Uncertainy

• A wide range of interesting economic models involve some degree of
uncertainty (aggregate or individual-level).

• To avoid the use of measure theory, we focus on economies in which
stochastic variables take finitely many values.

• This restriction enables us to use Markov chains, instead of general
Markov processes, to represent uncertainty.

Dynamic Optimization Jesús Bueren 55



Uncertainty The NGM with Uncertainty

The NGM with Uncertainty

• Now, we focus on another application: the stochastic version of
neoclassical growth model where shocks are going to affect firm’s
productivity.

y(z , k) = ez f (k)

• We are going to assume that stochastic variables can take finitely
many values.

• This restriction allows us to use Markov chains to represent
uncertainty.

Dynamic Optimization Jesús Bueren 56



Uncertainty The NGM with Uncertainty

The Social Planner Problem

• The recursive formulation of this problem can be written as:

V (k , z) =max
k ′

{
u(k , k ′, z) + βEz ′|z [V (k ′, z ′)]

}
s.t. k ′ ∈ Γ(k , z) ≡ [0, ez f (k) + (1− δ)k]

z ′ = ρz + ϵ, ϵ ∼ N(0, σ2
ϵ )

Dynamic Optimization Jesús Bueren 57



Uncertainty The NGM with Uncertainty

Discretize an AR(1) using the Tauchen Method
• Method for discretizing an AR(1) process in N points.

zt = ρzt−1 + ϵ, ϵ ∼ N(0, σ2
ϵ )

• Unconditional variance: σ2
z =

σ2
ϵ

1− ρ2

1. Create a (equally spaced) grid with first and last point in the grid q
standard deviations away from the mean: z1 = −qσz ,zN = qσz

▶ Space between points: dz =
zN − z1
N − 1

2. Fill the transition matrix Π:

Π(zj |zi ) = Pr

[
zj − dz/2 ≤ ρzi + ϵ ≤ zj + dz/2

]
= Φ

[
zj + dz/2− ρzi

σϵ

]
− Φ

[
zj − dz/2− ρzi

σϵ

]
Dynamic Optimization Jesús Bueren 58



Uncertainty The NGM with Uncertainty

Blackwell’s sufficient conditions

• Let’s define the operator T over function V g as:

TV g (kt , zt) =max
kt+1

{u(kt , kt+1, zt) + β
∑
zt+1

Π(zt+1|zt)V g (kt+1, zt+1)}

• Is operator T a contraction mapping? Are Blackwell’s sufficient
conditions satisfied?

Dynamic Optimization Jesús Bueren 59



Uncertainty The NGM with Uncertainty

Blackwell’s Sufficient Conditions
• Monotonicity: If V (kt , zt) ≤ W (kt , zt) for all kt and zt :

TV (kt , zt) = max
kt+1

{u(kt , kt+1, zt) + β
∑
zt+1

Π(zt+1|zt)V (kt+1, zt+1)}

= u(kt , gv (kt , zt), zt) + β
∑
zt+1

Π(zt+1|zt)V (gv (kt , zt), zt+1)

≤ u(kt , gv (kt , zt), zt) + β
∑
zt+1

Π(zt+1|zt)W (gv (kt), zt+1) ≤ TW (kt , zt)

• Discounting:

T [V (kt , zt) + a]

= max
kt+1

{u(kt , kt+1, zt) + β
∑
zt+1

Π(zt+1|zt)(V (kt+1, zt+1) + a)}

= T [V (kt , zt)] + βa

Dynamic Optimization Jesús Bueren 60



Uncertainty The NGM with Uncertainty

Discrete State-Space Methods: Value Function Iteration

• Make a guess of V 0 and loop over all combinations of capital and
shocks and solve for:

V 1(ki , zj) = max
k ′∈K

U(ezj f (ki ) + (1− δ)ki − k ′) + β
∑
z ′

Π(z ′|zj)V 0(k ′, z ′)

• If V 1 and V 0 are different, then set V 0 = V 1 and iterate until
convergence.

Dynamic Optimization Jesús Bueren 61



Uncertainty The NGM with Uncertainty

Policy function

8 10 12 14
9

10

11

12

13

14

45 degree

policy

8 10 12 14
-1

-0.5

0

0.5

Dynamic Optimization Jesús Bueren 62



Uncertainty The NGM with Uncertainty

Simulation
• Now we don’t reach an steady state level of capital but a stationary
distribution for capital.

Dynamic Optimization Jesús Bueren 63



Uncertainty The NGM with Uncertainty

The Social Planner
Characterizing the Solution

• Taking first-order conditions from recursive formulation we get:

∂u(k , k ′, z)

∂k ′
+ βEz ′|z

∂V (k ′, z ′)

∂k ′
= 0

uc(k , k
′, z) = βEz ′|z

[
(ez

′
f ′(k ′) + 1− δ)uc(k

′, k ′′, z ′)
]

Dynamic Optimization Jesús Bueren 64



Uncertainty Decentralized Solution

Decentralized Solution

• Let’s now decentralize the stochastic one-sector growth model.

• As in the previous chapter we will define three ways of decentralizing :

1. Arrow-Debreu.
2. Sequential Equilibrium.
3. Recursive Competitive Equlibrium.

Dynamic Optimization Jesús Bueren 65



Uncertainty Decentralized Solution

Competitive Equilibria
Arrow-Debreu

• We now assume that there is a market at time 0 for each
consumption commodity

• The household problem is given by:

max
{ct(z t),kt+1(z t)}∞t=0

∞∑
t=0

βt
∑
z t

π(z t)u(ct(z
t))

∞∑
t=0

∑
z t

pt(z
t)[ct(z

t) + kt+1(z
t)] ≤

∞∑
t=0

∑
z t

pt(z
t)[(1 + rt(z

t))kt(z
t−1) + wt(z

t))]

• The firm’s problem is given by:

max
kt

pt(z
t)
(
ezt f (kt(z

t))− (rt(z
t) + δ)kt(z

t)− wt(z
t)
)

Dynamic Optimization Jesús Bueren 66



Uncertainty Decentralized Solution

Competitive Equilibria
Arrow-Debreu

• The Arrow-Debreu date-0 competitive equilibrium is a sequence of
prices {rt(z t),wt(z

t), pt(z
t)}∞t=0 and quantities

{ct(z t), kt+1(z
t), }∞t=0 such that

1. {ct(z t), kt+1(z
t), }∞t=0 solve the household problem.

2. Given prices {rt(z t)}∞t=0 and {zt}∞t=0, {kt(z t)}∞t=0 solves the firms
problem.

3. Markets clears:

ct(z
t) + kt+1(z

t) = (1− δ)kt(z
t−1) + ezt f (kt(z

t−1))

Dynamic Optimization Jesús Bueren 67



Uncertainty Decentralized Solution

Competitive Equilibria
Arrow-Debreu

• Using household FOCs wrt to ct(z
t):

βtπ(z t)uc(ct(z
t)) = pt(z

t)λ

• Using household FOCs wrt to kt+1(z
t):

pt(z
t) =

∑
z t+1

pt+1(z
t+1)(1 + rt+1(z

t+1))

• Using firms FOCs wrt to kt(z
t):

rt(z
t) + δ = ezt fk(kt(z

t−1))

Dynamic Optimization Jesús Bueren 68



Uncertainty Decentralized Solution

Competitive Equilibria
Arrow-Debreu

• Using HH FOCs we get:

uc(ct(z
t)) =

∑
z t+1

λpt+1(z
t+1)

βtπ(z t)
(1 + rt+1(z

t+1))

and introducing firm’s FOC:

uc(ct(z
t)) =

∑
z t+1

λpt+1(z
t+1)

βtπ(z t)
(ezt+1fk(kt+1(z

t)) + 1− δ)

separately taking derivative of HH FOC wrt to ct+1(z
t+1):

βt+1π(z t+1)uc(ct+1(z
t+1)) = pt+1(z

t+1)λ

or equivalently

λpt+1(z
t+1)

βtπ(z t)
= βπ(z t+1|zt)uc(ct+1(z

t+1))

Dynamic Optimization Jesús Bueren 69



Uncertainty Decentralized Solution

Competitive Equilibria
Arrow-Debreu

• Therefore we arrive at the same Euler equation than with the social
planner:

uc(ct(z
t)) =

∑
z t+1

βπ(z t+1|zt)uc(ct+1(z
t+1))(ezt fk(kt+1(z

t)) + 1− δ)

Dynamic Optimization Jesús Bueren 70



Uncertainty Decentralized Solution

Sequential Markets

• In the sequential markets equilibrium household problem is written as:

max
{ct(z t),kt+1(z t),at+1(st+1,st)}∞t=0

∞∑
t=0

βt
∑
z t

π(z t)u(ct(z
t))

ct(z
t) + kt+1(z

t) ≤ (1 + rt(z
t))kt(z

t−1) + wt(z
t) ∀z t

lim
t→∞

kt+1(z
t)∏t

s=0(1 + rt(z t))
≥ 0 ∀ z t

• Given that we have a representative agent and that Arrow-securties
need to be in zero net supply, we can eliminate them.

Dynamic Optimization Jesús Bueren 71



Uncertainty Decentralized Solution

Sequential Markets

• A sequential market equilibrium in this economy is a set of prices
wt(z

t), rt(z
t) and a set of allocations ct(z

t) and kt+1(z
t) for all z t

such that

1. Given prices, ct(z
t), kt+1(z

t) solve the consumer’s problem.

2. Given prices, kt(z
t−1) solves firm’s problem.

3. Markets clear

ct(z
t) + kt+1(z

t) = (1− δ)kt(z
t−1) + ezt f (kt(z

t−1))

Dynamic Optimization Jesús Bueren 72



Uncertainty Decentralized Solution

Recursive Competitive Equilibrium
• We can write the household’s DP programming formulation of the
competitive equilibrium as:

V (k ,K , z) =max
k ′

{u(c , k, k ′) + β
∑
z ′

π(z ′|z)V (k ′,K ′, z ′)

s.t. c + k ′ = w(K , z) + (1 + r(K , z))k

K ′ = G (K , z)

• Uncertainty does not affect the firm’s problem:

max ez f (K )− (r + δ)K − w

Thus,

r(K , z) = ez fk(K )− δ

w(K , z) = ez fl(K )

Dynamic Optimization Jesús Bueren 73



Uncertainty Decentralized Solution

Recursive Competitive Equilibrium

• A recursive competitive equilibrium is a set of functions of quantities
G (K , z), g(k ,K , z), lifetime utility level V (k ,K , z), and prices
r(K , z),w(K , z) such that:

1. V (k,K , z) solves the household problem, and g(k,K , z) is the
associated policy function.

2. Prices are competitively determined by firms FOCs.

3. Consistency is satisfied:

G (K , z) = g(K ,K , z)

4. Markets clear:

c + G (K , z) = ez f (K ) + (1− δ)K

Dynamic Optimization Jesús Bueren 74



Uncertainty Decentralized Solution

Recursive Competitive Equilibrium
Algorithm

• We could use the following pseudo-code for computing the RCE

1. Make guess of G0(K , z)

1.1 Make guess of V0 for all values of k,K and z .

1.2 Apply operator T and recover V1 = TV0 given G0(K , z).

1.3 If V0 and V1 are close enough go to step 2. Otherwise set V0 = V1 and
back to 1.1

2. From 1.3 recover the policy function g1(K ,K , z). If consistency is
satisfied, g1(K ,K , z) ≃ G0(K , z), stop. Otherwise, set
G0(K , z) = g1(K ,K , z) and go back to 1.1

Dynamic Optimization Jesús Bueren 75


	Introduction
	Providing Intuition
	Finite Horizon Dynamic Optimization
	Infinite Horizon Dynamic Optimization

	The General Problem
	The Neoclassical Growth Model
	The Planner's Problem
	Competitive Equilibrium

	Uncertainty
	The NGM with Uncertainty
	Decentralized Solution


