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Introduction

Dynamic Optimization

• In this chapter we are going to characterize solutions to dynamic
optimization problems

• In order to solve them, we are going to introduce discrete dynamic
programming.

• Along our way, we are going to revise some mathematical concepts
covered by Villanacci.

• References: The PhD Macro Book (Ch 4), Acemoglu (Ch 6), and
SLP (Ch 4).
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Providing Intuition Finite Horizon Dynamic Optimization

Motivating the Recursive Formulation
A Cake Eating Problem

• We will go over a very simple dynamic optimization problem.

• Suppose that you are presented with a cake of size W1.

• At each point in time t = 1, 2, . . . ,T , you can eat some of the cake
but must save the rest.

• Let ct be your consumption at time t and u(ct) represent the flow of
utility.

• u twice differentiable, strictly increasing, strictly concave,
lim
c→0

u′(c) = ∞.

• Discount factor: 0 < β < 1
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Providing Intuition Finite Horizon Dynamic Optimization

The Sequential Formulation
A Cake Eating Problem

• The agent is solving:

max
{ct ,Wt+1}Tt=0

T∑
t=0

βtu(ct)

s.t. ct +Wt+1 = Wt ∀t
WT+1 ≥ 0

• The Lagrangian associated to this problem is given by:

L =
T∑
t=0

βtu(ct) +
T∑
t=0

λt(Wt − ct −Wt+1) + ϕWT+1
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Providing Intuition Finite Horizon Dynamic Optimization

The Sequential Formulation
A Cake Eating Problem

• FOCs:

βtuc(ct) = λt

λt = λt+1

λT = ϕ

ϕ ≥ 0 with ϕWT+1 = 0 ⇒ βTuc(ct)WT+1 = 0

u′(ct) = βu′(ct+1) ∀t ∈ [0,T − 1]

WT+1 = 0

• With the set of T intertemporal equations (euler equations), an initial
condition and a terminal condition
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Providing Intuition Finite Horizon Dynamic Optimization

The Recursive Formulation
A Cake Eating Problem

• In order to solve finite-horizon dynamic programming problems, we
are going to proceed by backwards induction.

• For t = T , given the properties of u and the constraint, the optimal
solution is given by:

cT = WT

u(cT ) = u(WT )
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Providing Intuition Finite Horizon Dynamic Optimization

The Recursive Formulation
A Cake Eating Problem

• We define the value function at time T as:

VT (WT ) = max
cT

u(cT )

cT +WT+1 = WT

• The optimal cake-saving decision is thus:

gT (WT ) = 0

and the value function is given by:

VT (WT ) = u(WT )
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Providing Intuition Finite Horizon Dynamic Optimization

The Recursive Formulation
A Cake Eating Problem

• Now let’s go to t = T − 1 given that we have solved the problem for
t = T and define VT−1.

VT−1(WT−1) = max
cT−1,cT ,WT ,WT+1

u(cT−1) + βu(cT )

s.t. cT−1 +WT = WT−1

cT +WT+1 = WT

• Given that we already we know what is optimal to do in the next
period, we can simplify the problem at T − 1 as:

VT−1(WT−1) = max
cT−1,WT

u(cT−1) + βVT (WT )

s.t. cT−1 +WT = WT−1
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Providing Intuition Finite Horizon Dynamic Optimization

The Recursive Formulation
A Cake Eating Problem

• Le’s write the optimality conditions as:

u′(cT−1) = βV ′
T (WT )

u′(cT−1) = βu′T (WT )

• The solution coincides with the sequential formulation in the last
period.

• We are in good track but what about previous periods?

Dynamic Optimization Jesús Bueren 9



Providing Intuition Finite Horizon Dynamic Optimization

The Recursive Formulation
A Cake Eating Problem

• Since it’s going to be useful let’s first derive the value of
V ′
T−1(WT−1) given the optimal cake saving decision gT−1(WT−1)

obtained from the previous FOC.

VT−1(WT−1) =u(WT−1 − gT−1(WT−1)) + βVT (gT−1(WT−1))

∂VT−1(WT−1)

∂WT−1
=uc(cT−1)− uc(cT−1)

∂gT−1(WT−1)

∂WT−1
+

β
∂gT−1(WT−1)

∂WT−1

VT (WT )

∂WT

∂VT−1(WT−1)

∂WT−1
=uc(cT−1) +

∂gT−1(WT−1)

∂WT−1

(
β
VT (WT )

∂WT
− uc(cT−1)

)
∂VT−1(WT−1)

∂WT−1
=uc(cT−1)
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Providing Intuition Finite Horizon Dynamic Optimization

The Recursive Formulation
A Cake Eating Problem

• At T − 2 the problem can be written as:

VT−2(WT−2) = max
cT−2,WT−1

u(cT−2) + βVT−1(WT−1)

s.t. cT−2 +WT−1 = WT−2

• With FOCs:

uc(cT−2) = β
∂VT−1(WT−1)

∂WT−1
= βuc(cT−1)
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Providing Intuition Infinite Horizon Dynamic Optimization

Infinite Horizon
A Cake Eating Problem

• Suppose for the cake-eating problem, we allow the horizon to go to
infinity.

• The main advantage of an infinite horizon is that the agent problem
becomes stationary: the maximization problem at date t is exactly
the same as in period t + 1

• Unlike in finite horizon case, we don’t have a terminal condition in the
cake eating problem we will thus need to impose a transversality
condition:

lim
t→∞

βtuc(ct)Wt+1 = 0

if discounted marginal utility is positive, the amount of cake needs to
go to zero to rule out over-accumulation

Dynamic Optimization Jesús Bueren 12



Providing Intuition Infinite Horizon Dynamic Optimization

Infinite Horizon
A Cake Eating Problem

• One can consider solving the infinite horizon sequence given by:

max
{ct ,Wt+1}∞t=0

∞∑
t=0

βtu(ct)

s.t. ct +Wt+1 = Wt + y ∀ t

lim
t→∞

βtuc(ct)Wt+1 = 0

• Written in recursive form:

V (Wt) = max
{ct ,Wt+1}

u(ct) + βV (Wt+1) (1)

s.t. ct +Wt+1 = Wt + y

lim
t→∞

βtV (Wt) = 0 (2)

The transversality condition (2) is frequently avoided because
assuming V being bounded, its is satisfied for β < 1.
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Providing Intuition Infinite Horizon Dynamic Optimization

Infinite Horizon
A Cake Eating Problem

• Equation (1) is referred as the Bellman equation.

• It is a functional equation: the unknown represents as function.

• By FOCs:

uc(ct) = β
∂V (Wt+1)

∂Wt+1
(3)

• Let’s define g(W ) the optimal savings function associated with
equation (1):

g(Wt) =arg max
Wt+1

u(Wt + y −Wt+1) + βV (Wt+1)

V (Wt) =u(Wt + y − g(Wt)) + βV (g(Wt))
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Providing Intuition Infinite Horizon Dynamic Optimization

Infinite Horizon
A Cake Eating Problem

• Provided that g is differentiable we can now compute:

∂V (Wt)

∂Wt
= uc(ct) +

∂g(Wt)

∂Wt

(
β
∂V (Wt+1)

∂Wt+1
− uc(ct)

)
∂V (Wt)

∂Wt
= uc(ct) ⇒

∂V (Wt+1)

∂Wt+1
= uc(ct+1)

• Then we can write equation (3) as:

uc(ct) = βuc(ct+1)
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Providing Intuition Infinite Horizon Dynamic Optimization

Infinite Horizon
A Cake Eating Problem

• Under what conditions V exists? Is it unique?

• How to find V in the infinite horizon case?

• Is g a function or a correspondence? Is it differentiable?
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The General Problem

The Dynamic Programming Approach

• Buiding on the intuition gained from the cake eating problem, we now
consider a more formal treatment of the dynamic programming
approach to answer the previous questions.

• We begin with the nonstochastic case and then add uncertainty to
the formulation.
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The General Problem

The Dynamic Programming Approach

• Consider the infinite horizon optimization problem of an agent with
payoff function σ̃(st , ct).

• state vector: st ; control vector: ct .

• Transition equation: st+1 = τ̃(st , ct).

• The state summarizes all the information from the past that is needed
to make a forward-looking decision.

• s ∈ S and c ∈ C(s).

• Let β be the discount factor and assume 0 < β < 1.
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The General Problem

The Dynamic Programming Approach
• The sequential problem can be written as:

max
{ct}∞t=0

∞∑
t=0

βt σ̃(st , ct)

s.t. st+1 = τ̃(st , ct)

ct ∈ C̃(st)

• We can rewrite the problem by imposing the law of motion of the
state:

V ∗(s0) = max
{st+1}∞t=0

∞∑
t=0

βtσ(st , st+1)

s.t. st+1 ∈ C(st),

Where V ∗ denotes the highest possible value the the objective
function can reach
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The General Problem

• The basic idea of dynamic programming is to turn the sequential
problem into a functional equation:

V (s) = max
s′∈C(s)

σ(s, s ′) + βV (s ′) (4)

• Instead of choosing a sequence {st}∞t=0, we choose a policy, which
determines the control s ′ as a function of the state s.

• Given that V appears both in both sides of the equation 4 and thus it
is defined recursively.

• Equation 4 is also referred as the Bellman equation after Richard
Bellman, who was the first to introduce the dynamic programming
formulation.

• A solution to the functional equation is thus a fixed point.
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The General Problem

Math Review
Brouwer’s Fixed Point Theorem

• Let M be a nonempty compact (closed and bounded) convex set.

• Let T be a continuous function that maps each point x ∈ M to
itself.

• Then T has a fixed point x∗ ∈ F such that T (x∗) = x∗

• More questions:

- To which set does V belong to?

- Does the operator defined in the functional equation map each element
of that set to itself?

- Is the fixed point unique?
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The General Problem

Math Review
What is a Contraction Mapping?

• Let (M, d) be a metric space where M is a set and d is a metric.

A metric space is a set and a function such that for all x , y , z ∈ S :

1. d(x , y) ≥ 0, with equality iff x = y
2. d(x , y) = d(y , x)
3. d(x , y) ≤ d(x , z) + d(z , y)

• Let T : M → M be an function mapping M into itself.

• If there exists a β ∈ (0, 1) such that,

d(Tz1,Tz2) ≤ βd(z1, z2) ∀ z1, z2 ∈ S

then T is a contraction mapping with modulus β.

• In other words, a contraction mapping brings elements of the space
M uniformly closer to one another.
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The General Problem

Math Review
Contraction Mapping Theorem

Let (M, d) be a complete metric space and suppose T : M → M is
a contraction mapping.

A metric space is complete if every Cauchy sequence is a convergent
sequence.

- A sequence {xn}∞n=0 is a Cauchy sequence if for all ϵ > 0 there exists an
N ∈ N such that for all l , n > N, d(xl , xn) < ϵ

- A sequence {xn}∞n=0 is a convergent sequence to x0 ∈ M if for all ϵ > 0,
there exist here exists an N ∈ N such that for any n > N, d(xn, x0) < ϵ

• Then, T has a unique fixed point ẑ and for any z0 ∈ M, and any
n ∈ N we have d(T nz0, ẑ) ≤ βnd(z0, ẑ) .

• That is there exists a unique ẑ ∈ M such that

Tẑ = ẑ

and regardless of the starting guess z0, the sequence {T nz0}∞n=0

converges to ẑ .
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The General Problem

Match Review
Blackwell’s Sufficient Conditions for a Contraction

• Let s ∈ S and (M, d) be the metric space where M is the set of
bounded function equipped with the sup norm.

• Let T : M(s) → M(s) satisfying:

1. Monotonicity: If W (s) ≥ Q(s), for all s ∈ S, then TW (s) ≥ TQ(s).

2. Discounting: for any constant k there exists β̃ ∈ [0, 1) such that
T (W + k)(s) ≤ T (W )(s) + βk .

• Then T is a contraction.
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The General Problem

Recursive Formulation

• In order to apply the Blackwell sufficient conditions, we need V to
belong to the set of bounded functions.

• For this to be true, we need some assumption on the primitive objects.
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The General Problem

Recursive Formulation

• σ(st , st+1) needs to be bounded so that it does not yield infinite
returns: we cannot compare two choices of st+1 that deliver infinite
value.

• With β ∈ (0, 1) and bounded σ, the V will be bounded for the
problems that we will see in this course.

- Problems might arise in models of growth: you would need growth in
the return function to be “smaller” than the rate of discounting such
that discounted returns are bounded.

• This assumption will allow us to define the set of V : the set of
continuous bounded functions.

• Equipped with the supremum norm forms a complete metric space.
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The General Problem

Recursive Formulation

• If σ is continuous and C is nonempty and compact (closed and
bounded).

⇒ Unique value function satisfying the functional equation and
therefore it is possible to find V (x) by an iterative process

1. Select any initial value V0(s) ∀s ∈ S.

2. Define a sequence of functions:

Vn(x) = max
s′∈C(s)

σ(s, s ′) + βVn−1(s)

3. The sequence {V0,V1, . . . ,Vn}∞n=0 converges to V
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The General Problem

Recursive Formulation

• Even if V is unique it could be that the policy associated could be a
correspondence unless we put further restrictions of σ and C:

1. σ(s, s ′): strictly concave, continuous, and differentiable.

2. C(s): convex

⇒ We have a continuous and differentiable policy function

• The Enveloppe theorem holds:

∂v(s)

∂s
=

∂σ(s, s ′)

∂s
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The General Problem

Is T a Contraction?
Blackwell’s Sufficient Conditions: Monotonicity

• Let Q(s) ≤ W (s) ∀s ∈ S.

• Let ϕQ(s) be the policy function obtained from:

ϕQ(s) = arg max
s′∈C(s)

σ(s, s ′) + βQ(s ′)

• Then,

TQ(s) = σ(s, ϕQ(s)) + βQ(ϕQ(s)) ≤ σ(s, ϕQ(s)) + βW (ϕQ(s))

= max
s′∈C(s)

σ(s, s ′) + βW (s ′) = TW (s)
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The General Problem

Is T a Contraction?
Blackwell’s Sufficient Conditions: Discounting

• This property is easy to verify in the dynamic programming problem:

T (W + k)(s) = max
s′∈C(s)

σ(s, s ′) + β(W (s ′) + k)

= TW (s) + βk
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The Neoclassical Growth Model

The Neoclassical Growth Model

• In 1928 Frank Ramsey, a young mathematician, posed the problem:

“How much of its income should a nation save?”

and developed a dynamic model to answer this question.

• Economic agent (a social planner) producing output from labor and
capital who must decide how to split production between
consumption and capital accumulation.
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The Neoclassical Growth Model The Planner’s Problem

The Neoclassical Growth Model
The Planner’s Problem

• Time is discrete.

• Production is given by yt = f (kt) where kt is capital. f satisfies inada
conditions.

• The planner’s problem is given by:

max
{ct}∞t=0{kt+1}∞t=0

∞∑
t=0

βtu(ct)

s.t. ct + kt+1 ≤ f (kt) + (1− δ)kt ∀t
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The Neoclassical Growth Model The Planner’s Problem

The Neoclassical Growth Model
The Planner’s Problem

• Now let’s write the planner’s problem in recursive form:

V (k) = max
k ′∈[0,f (k)+(1−δ)k]

u
(
f (k) + (1− δ)k − k ′

)
+ βV (k ′)

• The solution is characterized by:

uc(c) = β
∂V (k ′)

∂k ′
= β

(∂f (k ′)
∂k ′

+ 1− δ
)
uc(c

′)
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The Neoclassical Growth Model The Planner’s Problem

The Neoclassical Growth Model
The Planner’s Problem

• In the one sector growth model we define the operator T to be:

TV (k) = max
k ′∈[0,f (k)+(1−δ)k]

{u(f (k) + (1− δ)k − k ′) + βV (k ′)}

• We want to argue that this operator has as unique fixed point using
the contraction mapping theorem.

• Thus we are going to do it using Blackwell’s sufficient conditions.
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The Neoclassical Growth Model The Planner’s Problem

The Neoclassical Growth Model
The Planner’s Problem

• Monotonicity:

Let ϕQ(k) = arg max
k ′∈Γ(k)

u(f (k) + (1− δ)k − k ′ + βQ(k ′)

if Q(k) ≤ W (k), for all k

then TQ(k) = u(f (k) + (1− δ)k − ϕQ(k)) + βV (ϕQ(k))}
≤ u(f (k) + (1− δ)k − ϕQ(k)) + βW (ϕQ(k))} ≤ TW (k)

• Discounting:

T (V + a)(k) = max
k ′∈Γ(k)

{u(f (k) + (1− δ)k − k ′) + β(V (k ′) + a)}

=TV (k) + βa
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The Neoclassical Growth Model The Planner’s Problem

Solving the problem numerically
Discrete State Methods

• There exists a variety of numerical methods to solve dynamic
programming problems like the Ramsey problem (projection,
perturbation, parameterized expectation).

• The need of numerical methods arises from the fact that dynamic
programming problems generally do not have tractable closed form
solutions.

• Because of their simplicity, we are going to focus on discrete-state
space methods.
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The Neoclassical Growth Model The Planner’s Problem

Solving the problem numerically
Discrete State Methods

• In this case, the value function is a finite dimensional object.

• For instance, if the state space is one dimensional and has elements
S = s1, s1, . . . , sn, the value function is just a vector of n elements
where each element gives the value attained by the optimal policy if
the initial state of the system is sn ∈ S.

• Drawback: curse of dimensionality.

▶ If the the value function of an m-dimensional problem with n different
points in each dimension is an array of nm different elements and the
computation time needed to search this array may be prohibitively high.
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The Neoclassical Growth Model The Planner’s Problem

Solving the problem numerically
Value Function Iteration

• Given that Blackwell sufficient conditions hold, the can use the
following pseudo-code for finding the value function:

1. Make a guess for V0 for all values of capital.

2. Apply the operator T and recover V1 = TV0

3. Compute distance between V0 and V1.

3.1 If V1 and V0 are close enough, stop.

3.2 Otherwise set V0 = V1 and go back to 2.

• Once the algorithm has converged, you can simulate the path for
capital of an economy with an initial capital endowment.
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The Neoclassical Growth Model The Planner’s Problem

Solving the problem numerically
Value Function Iteration

• Define a grid with N points of capital between [k , k̄] around the
steady state level of capital.

• Define a value of V0 for all the points in this grid. Let’s say V0 = 0
for all k.

• Given this V0, we can generate a vector for each level of capital ki
which elements are:

u(f (ki ) + (1− δ)ki − k1) + βV0(k1)
u(f (ki ) + (1− δ)ki − k2) + βV0(k2)

...
u(f (ki ) + (1− δ)ki − kN) + βV0(kN)


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The Neoclassical Growth Model The Planner’s Problem

Solving the problem numerically
Value Function Iteration

• TV0(k) can be approximated by the maximum value of the elements
of this vector.

• Looping through all values of i ∈ [0,N] we will recover V1.

• Given V1 we can recover V2.
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The Neoclassical Growth Model The Planner’s Problem

Solving the problem numerically
Value Function Iteration

• We iterate until Vg and Vg+1 are sufficiently close
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The Neoclassical Growth Model The Planner’s Problem

Solving the problem numerically
Value Function Iteration

• Now that we have V , we need to recover π(k) which is given by:

π(k) = argmax
k ′

{u(k , k ′) + βV (k ′)}
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The Neoclassical Growth Model The Planner’s Problem

Solving the problem numerically
What do we aim for?

• A policy function:
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The Neoclassical Growth Model The Planner’s Problem

Solving the problem numerically
Evolution of capital

• Given π(k) we can simulate the transition towards the steady state
for any k0 ∈ [k, k̄].
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The Neoclassical Growth Model The NGM with Uncertainty

The NGM with Uncertainty

• Now, we focus on another application: the stochastic version of
neoclassical growth model where shocks are going to affect firm’s
productivity.

y(z , k) = ez f (k)

• We are going to assume that stochastic variables can take finitely
many values.

• This restriction allows us to use Markov chains to represent
uncertainty.
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The Neoclassical Growth Model The NGM with Uncertainty

The Social Planner Problem

• The recursive formulation of this problem can be written as:

V (k , z) =max
k ′

{
u(k , k ′, z) + βEz ′|z [V (k ′, z ′)]

}
s.t. k ′ ∈ Γ(k , z) ≡ [0, ez f (k) + (1− δ)k]

z ′ = ρz + ϵ, ϵ ∼ N(0, σ2
ϵ )
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The Neoclassical Growth Model The NGM with Uncertainty

Discretize an AR(1) using the Tauchen Method
• Method for discretizing an AR(1) process in N points.

zt = ρzt−1 + ϵ, ϵ ∼ N(0, σ2
ϵ )

• Unconditional variance: σ2
z =

σ2
ϵ

1− ρ2

1. Create a (equally spaced) grid with first and last point in the grid q
standard deviations away from the mean: z1 = −qσz ,zN = qσz

▶ Space between points: dz =
zN − z1
N − 1

2. Fill the transition matrix Π:

Π(zj |zi ) = Pr

[
zj − dz/2 ≤ ρzi + ϵ ≤ zj + dz/2

]
= Φ

[
zj + dz/2− ρzi

σϵ

]
− Φ

[
zj − dz/2− ρzi

σϵ

]
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The Neoclassical Growth Model The NGM with Uncertainty

Blackwell’s sufficient conditions

• Let’s define the operator T over function V g as:

TV g (kt , zt) =max
kt+1

{u(kt , kt+1, zt) + β
∑
zt+1

Π(zt+1|zt)V g (kt+1, zt+1)}

• Is operator T a contraction mapping? Are Blackwell’s sufficient
conditions satisfied?
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The Neoclassical Growth Model The NGM with Uncertainty

Blackwell’s Sufficient Conditions
• Monotonicity: If V (kt , zt) ≤ W (kt , zt) for all kt and zt :

TV (kt , zt) = max
kt+1

{u(kt , kt+1, zt) + β
∑
zt+1

Π(zt+1|zt)V (kt+1, zt+1)}

= u(kt , gv (kt , zt), zt) + β
∑
zt+1

Π(zt+1|zt)V (gv (kt , zt), zt+1)

≤ u(kt , gv (kt , zt), zt) + β
∑
zt+1

Π(zt+1|zt)W (gv (kt), zt+1) ≤ TW (kt , zt)

• Discounting:

T [V (kt , zt) + a]

= max
kt+1

{u(kt , kt+1, zt) + β
∑
zt+1

Π(zt+1|zt)(V (kt+1, zt+1) + a)}

= T [V (kt , zt)] + βa
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The Neoclassical Growth Model The NGM with Uncertainty

Discrete State-Space Methods: Value Function Iteration

• Make a guess of V 0 and loop over all combinations of capital and
shocks and solve for:

V 1(ki , zj) = max
k ′∈K

U(ezj f (ki ) + (1− δ)ki − k ′) + β
∑
z ′

Π(z ′|zj)V 0(k ′, z ′)

• If V 1 and V 0 are different, then set V 0 = V 1 and iterate until
convergence.
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Policy function
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Simulation
• Now we don’t reach an steady state level of capital but a stationary
distribution for capital.
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The Social Planner
Characterizing the Solution

• Taking first-order conditions from recursive formulation we get:

∂u(k , k ′, z)

∂k ′
+ βEz ′|z

∂V (k ′, z ′)

∂k ′
= 0

uc(k , k
′, z) = βEz ′|z

[
(ez

′
f ′(k ′) + 1− δ)uc(k

′, k ′′, z ′)
]
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