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Introduction

Introduction

• Most papers that we are going to cover in this course estimate
parameters using the method of simulated moments.

▶ For this purpose, we are going to revise the general method of
moments.

▶ Application to life-cycle heterogeneous agents models.

• These slides are based on Greene Chapter 13, Hayashi chapter 3,
and Arellano Appendix A
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The Method of Moments

The Method of Moments

• GMM estimators move away from parametric assumptions about
the data generating process made when using maximum likelihood.

• GMM exploits the fact that sample statistics each have a
counterpart in the population:

- e.g. sample mean and population expected value

• Is it a good idea to use sample data to infer characteristics of the
population?
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The Method of Moments

The Method of Moments
• Considear i.i.d random sampling from distribution
f(y|θ1, θ2, . . . , θK) with finite moments E[y2K ].

• The kth “raw” uncentered moment is given by:

m̄k(y) =
1

n

n∑
i=1

yki (1)

• By the LLN we have:

E[m̄k(y)] = µk = E[yki ] (2)

V ar[m̄k(y)] =
1

n
V ar[yki ] =

1

n
(µ2k − µ2k) (3)

• By the CLT:

√
n(m̄k(y)− µk)

d−→ N(0, µ2k − µ2k) (4)
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The Method of Moments

The Method of Moments
General Idea

• In general, µk is going to be a function of the underlying
parameters.

• By computing K raw moments in the data and equating them to
the functions implied by the population moments:

▶ We obtain K equations with K unknowns.

▶ In principle, we could solve this system of equations to provide
estimates of the K unknown parameters.
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The Method of Moments

The Method of Moments

• Moments based on powers of y provide a natural source of
information about the parameter.

• Instead, functions of the data may also be useful.

• Let mk(.) be a continuous and differentiable function.

• We could construct the following data moment:

m̄k(y) =
1

n

n∑
i=1

mk(yi), k = 1, 2, . . . ,K (5)

• By the LLN:

plimn→∞ m̄k(y) = E[mk(yi)] = µk(θ1, . . . , θK)
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The Method of Moments

The Method of Moments
• We define a moment conditions as a function of the model and data,
such that their expectation is zero at the true parameter values:

E(mk(y,θ0)) = 0

• With K parameters, the method of moments estimator can be
defined as parameter vector θ̂ that solves for the sample analog of
the population moment conditions:

m̄1(y, θ̂) =
1

N

n∑
i=1

m1(yi, θ̂) = 0

...

m̄k(y, θ̂) =
1

N

n∑
i=1

mk(yi, θ̂) = 0
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The Method of Moments

The Method of Moments
Example 1: Method of Moments for N(µ, σ2)

• By LLN:

m1(y, µ) = E[y − µ] = 0

m2(y, µ, σ) = E[(y − µ)2 − σ2] = 0

• Their corresponding sample analogs give us the moment estimator:

m̄1(y, µ̂) =
1

n

N∑
n=1

(yi − µ̂) = 0

m̄2(y, µ̂, σ̂
2) =

1

n

N∑
n=1

(yi − µ̂)2 − σ̂2 = 0
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The Method of Moments

The Method of Moments
Example 2: Gamma Distribution

• The gamma distribution is

f(y) =
λp

Γ(P )
e−λyyP−1, y ≥ 0, P > 0, λ > 0

• Imagine you had n i.i.d random draws from f(y).

• By the properties of the gamma distribution we have:

E


y − P/λ

y2 − P (P + 1)/λ2

ln y −Ψ(P )− lnλ
1/y − λ/(P − 1)

 = 0

• Depending on the targeted moments you will obtain different
solutions (see code)
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The Method of Moments Identification

Identification

• We have a set of moment condition that hold in the population:

E[m(y,θ0)] = 0 (6)

• Let θ̂ be a a vector of parameter such that:

E[m(y, θ̂)] = 0

• We say that the coefficient vector is identified if θ̂ = θ0

• Conditions for identification:

1. Number of moment conditions equal to number of parameters.
2. The matrix of derivatives, Ḡ(θ0), will have full rank i.e. rank K.

Question: Is it a problem if two moments are linearly dependent?
3. If m(y,θ) is continuous, the parameter vector that satisfies the

population moments conditions is unique.
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The Method of Moments Asymptotic Properties

The Method of Moments
Asymptotic Properties

• In a few cases, we can obtain the exact distribution of the method of
moments estimator.

▶ For example, in sampling from the normal distribution, µ̂ ∼ N(µ, σ2/n)

• In general we don’t know the distribution of the estimated
parameters.

▶ We are going to use the CLT to construct asymptotic approximation of
distributions of the estimated parameters.
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The Method of Moments Asymptotic Properties

The Method of Moments
Asymptotic Properties

• From the application of the central limit theorem we know that:

√
Nm̄(y,θ0) =

√
N

1

N

N∑
i=1

m(yi,θ0)
d−→ N(0,Φ),

where Φ = E[m(y,θ0)m(y,θ0)
′] is the asymptotic variance

covariance matrix of the moment conditions.

• Let’s denote Γ(θ0) the gradient of the moment conditions:

Γ(θ0) =
∂m̄(y,θ0)

∂θ0
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The Method of Moments Asymptotic Properties

The Method of Moments
Asymptotic Properties

• Empirically θ̂ us found by solving the system of equations:

m̄(y, θ̂) =
1

n

n∑
i=1

m(yi, θ̂) = 0

a consistent estimator of the asymptotic covariance of the moment
conditions can be computed using:

Fjk =
1

n

n∑
i=1

mj(yi, θ̂)mk(yi, θ̂)

• The estimator provides the asymptotic covariance matrix of the
moments.

F
p−→ Φ,
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The Method of Moments Asymptotic Properties

The Method of Moments
Asymptotic Properties

• Under our assumption of random sampling, although the precise
distribution of the parameters is likely to be unknown, we can
appeal to the CLT to obtain asymptotic approximation.

• Let Ḡ(θ) denote the K ×K matrix whose kth row is the vector of
partial derivatives,

Ḡk(θ̄)
′ =

∂m̄k(y, θ̄)

∂θ̄

• Assuming that the functions in the moment conditions are
continuous and functionally independent,

Ḡk(θ̂)
′ p−→ Γk(θ0)

′
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The Method of Moments Asymptotic Properties

The Method of Moments
Asymptotic Properties

• Assuming moment conditions are continuous and continuously
differentiable, by the mean value theorem, there exists a point θ̄ in
(θ̂,θ0) such that:

m̄(y, θ̂) = 0

m̄(y,θ0) + Ḡ′(θ̄)(θ̂ − θ0) = 0
√
N(θ̂ − θ0) = −Ḡ′(θ̄)−1

√
N m̄(y,θ0)

• Given that we know the asymptotic distribution of
√
N m̄(y,θ0)

and that θ̂ is consistent, then θ̄ → θ0 and G(θ̄) → G(θ0), thus:
√
N(θ̂ − θ0)

d−→ N(0, [Γ(θ0)]
−1Φ[Γ′(θ0)]

−1)

• Then the asymptotic covariance matrix of θ̂0 may be estimated with:

Est.Asy.Var[θ̂] =
1

n
[Ḡ(θ̂)]−1F [Ḡ′(θ̂)]−1
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The Method of Moments Examples

The Method of Moments
Example: The Normal Distribution

• We know that in the specific case of estimating the parameters of a
normal distribution:

▶ the distribution of the mean is exactly normal

▶ the distribution of the variance is a chi-square.

▶ the two distributions are independent

• The joint is a mixture of two independent distributions: a normal
and a chi-square.

• For teaching purposes, let’s ignore this and assume the general case
where we don’t know the distribution of the estimated parameters.
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The Method of Moments Examples

The Method of Moments
Example: The Normal Distribution

• We rewrite the moment conditions:

m̄1(y, θ̂) =
1

n

n∑
i=1

yi − µ̂ = 0

m̄2(y, θ̂) =
1

n

n∑
i=1

(yi − µ̂)2 − σ̂2 = 0,

where,

θ̂ =

[
µ̂
σ̂2

]
, m̄(y, θ̂) =

 1

n

∑n
i=1 yi − µ̂

1

n

∑n
i=1(yi − µ̂)2 − σ̂2
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The Method of Moments Examples

The Method of Moments
Example: The Normal Distribution

• So let’s derive again for this case the large sample properties:

√
nm̄(y,θ0)

d−→ N(0,Φ)

m̄(y, θ̂) = 0

m̄(y,θ0) +G′(θ̄)(θ̂ − θ0) = 0
√
n(θ̂ − θ0) = [−G′(θ̄)]−1m̄(y,θ0),

where

G(θ0) =

[
−1 0

2

n

∑n
i=1(yi − µ) −1

]
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The Method of Moments Examples

The Method of Moments
Example: The Normal Distribution

• Therefore we have,

√
n(θ̂ − θ0)

d−→ N(0, [G′(θ0)]
−1Φ[G(θ0)]

−1)

• Thus with an estimator of the covariance equal to:

Est.Asy.Var[θ̂] =
1

n

[
1 0
0 1

]−1

 1

n

∑n
i m1(yi, θ̂)

2 1

n

∑n
i m1(yi, θ)m2(yi, θ̂)

1

n

∑n
i m1(yi, θ)m2(yi, θ̂)

1

n

∑n
i m2(yi, θ̂)

2


[
1 0
0 1

]−1

19



The Method of Moments Examples

The Method of Moments
Example: The Gamma Distribution

• Now let’s go again back to our example of the gamma distribution.

m̄1(θ̂,y) =
1

n

n∑
i=1

yi − P̂ /λ̂

m̄2(θ̂,y) =
1

n

n∑
i=1

1/yi − λ̂/(P̂ − 1)

Thus,

G(θ̂) =

[
−1/λ̂ P̂ /λ̂2

λ̂/(P̂ − 1)2 −1/(P̂ − 1)

]
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The Method of Moments Examples

The Method of Moments
Example: Linear regression model

• In the previous case the optimal weighting matrix is only a function
of the data.

• Now let’s have a look into the linear regression model:

yi = x′
iβ + ϵi

• The lack of contemporaneous correlation, gives us a set of moment
equations:

E[mi,k] = E[xi,kϵi] = 0

• We have K equations and K unknowns.
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The Method of Moments Examples

The Method of Moments
Example: Linear regression model

m̄(β̂,x,y) =


1

n

∑n
i=1 xi,1ϵ̂i
...

1

n

∑n
i=1 xi,K ϵ̂i

 =


1

n

∑n
i=1 xi,1(yi − x′

iβ̂)

...
1

n

∑n
i=1 xi,K(yi − x′

iβ̂)


=

1

n

n∑
i=1

xi(yi − x′
iβ̂) = 0

β̂ =
[ 1
n

n∑
i=1

xix
′
i

]−1[ 1
n

n∑
i=1

xiyi

]
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The Method of Moments Examples

The Method of Moments
Example: Linear regression model

G(θ̂) =


− 1

n

∑n
i=1 xi,1xi,1 · · · − 1

n

∑n
i=1 xi,1xi,K

... · · ·
...

− 1

n

∑n
i=1 xi,Kxi,1 · · · − 1

n

∑n
i=1 xi,Kxi,K

 = − 1

n

n∑
i=1

xix
′
i

F =
1

n

n∑
i=1

xix
′
iϵ̂
2
i

• Note that this is the heteroskedasticity consistent variance estimator
of White.
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Generalized Method of Moments

Generalized Method of Moments

• Following our discussion using the example from the gamma
distribution, what do we do when we have more moments than
parameters?
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Generalized Method of Moments

Generalized Method of Moments

• Suppose now that the model involves K parameters,
θ = (θ1, . . . , θK)′ and that the theory provides a set of L ≥ K
moment conditions:

E[ml(θ0, yi)] = 0

• Denote the corresponding sample mean as:

m̄l(θ0,y) =
1

n

n∑
i=1

m(θ0, yi)
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Generalized Method of Moments

Generalized Method of Moments
• We aim at finding θ̂ that solves the following system of L equations
and K unknowns:

m̄(θ̂,y) = 0

• As long as the equations are independent, the system will not have a
unique solution.

• It will be necessary to reconcile the different sets of estimates that
can be produced.

• We can use as the criterion a weighted sum of squares:

θ̂ = argmin
θ

m̄′(θ,y)Wm̄(θ,y),

where W is any positive definite matrix that may depend on the
data but is not a function of θ
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Generalized Method of Moments Identification

Generalized Method of Moments
Identification

• We have a set of moment condition that hold in the population:

E[m(y,θ0)] = 0 (7)

• Let θ̂ be a a vector of parameter such that:

E[m(y, θ̂)] = 0

• We say that the coefficient vector is identified if θ̂ = θ0

• Conditions for identification:

1. Number of moment conditions larger or equal to number of parameters.
2. The matrix of derivatives, Ḡ(θ0), will have full rank (i.e. rank of K).

Question: Is it a problem if two moments are linearly dependent?
3. If m(y,θ) is continuous, the parameter vector that satisfies the

population moments conditions is unique.
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Generalized Method of Moments Asymptotic Properties

The Method of Moments
Asymptotic Properties

• From the application of the central limit theorem we have the same
asymptotic distribution of mean as before:

√
Nm̄(y,θ0) =

√
N

1

N

N∑
i=1

m(yi,θ0)
d−→ N(0,Φ),

where Φ = E[m(y,θ0)m(y,θ0)
′] is the asymptotic variance

covariance matrix of the moment conditions but now is of dimension
L× L (instead of K ×K)

• Let’s denote Γ(θ0) the gradient of the moment conditions:

Γ(θ0) =
∂m̄(y,θ0)

∂θ0
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Generalized Method of Moments Asymptotic Properties

The Generalized Method of Moments
Asymptotic Properties

• An appropriate estimator of the asymptotic covariance of the
moment conditions m̄ = [m̄1, . . . , m̄l] can be computed using:

Fjk =
1

n

n∑
i=1

mj(yi, θ̂)mk(yi, θ̂))

• The estimator provides the asymptotic covariance matrix of the
moments.

F
p−→ Φ,
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Generalized Method of Moments Asymptotic Properties

The Generalized Method of Moments
Asymptotic Properties

• Let Ḡ(θ̂) denote the L×K matrix whose lth row is the vector of
partial derivatives,

Ḡl(θ̂)
′ =

∂m̄l(y, θ̂)

∂θ̂

• Assuming that the functions in the moment conditions are
continuous and functionally independent:

Ḡ(θ̂)
p−→ Γ(θ0)
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Generalized Method of Moments Asymptotic Properties

The Generalized Method of Moments
Asymptotic Properties

• The first-order conditions for the GMM estimator are:

2Ḡ′(θ̂)Wm̄(θ̂,y) = 0 (8)

• We apply the mean-value theorem for a point in the parameter
space θ̄:

m̄(θ̂) = m̄(θ0) + Ḡ′(θ̄)(θ̂ − θ0) (9)

• Insert equation (9) in (8) to obtain:

Ḡ′(θ̂)Wm̄(θ0) + Ḡ′(θ̂)W Ḡ(θ̄)(θ̂ − θ0) = 0
√
n(θ̂ − θ0) = −[Ḡ′(θ̂)W Ḡ(θ̄)]−1Ḡ′(θ̂)W

√
nm̄(θ0)
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Generalized Method of Moments Asymptotic Properties

The Generalized Method of Moments
Asymptotic Properties

• By CLT we have:

√
nm̄0

d−→ N(0,Φ)

and Ḡ(θ̄)
p−→ Γ(θ0), therefore,

√
n(θ̂ − θ0)

d−→
N(0, [Γ′(θ0)WΓ(θ0)]

−1Γ′(θ0)WΦWΓ(θ0)[Γ
′(θ0)WΓ(θ0)]

−1)

• Then the asymptotic covariance matrix of θ̂ may be estimated with:

Est.Asy.Var[θ̂] =
1

N
[Ḡ′(θ̂)W Ḡ(θ̂)]−1Ḡ′(θ̂)WFW Ḡ(θ̂)[Ḡ′(θ̂)W Ḡ(θ̂)]−1

32



Generalized Method of Moments Asymptotic Properties

The Generalized Method of Moments
Asymptotic Properties

• When using the identity matrix we get the White estimator:

Asy.Var[θ0] =
1

N
[Γ′(θ0)Γ(θ0)]

−1Γ′(θ0)ΦΓ(θ0)[Γ
′(θ0)Γ(θ0]

−1

• If we define the weighting function as the inverse of the
variance-covariance matrix of the moment condition (the optimal
weighting matrix) we obtain:

Asy.Var[θ0] =
1

N
[Γ′(θ0)Φ

−1Γ[(θ0)]
−1
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Generalized Method of Moments Estimation

The Generalized Method of Moments
2-step Estimation

1. Use W = I to obtain a consistent estimator of θ0. Then obtain an
estimate of Φ using the variance covariance matrix F̂ of m̄(y, θ̂).

2. Setting W = F−1, compute a new estimation of θ0 using a
weighting matrix “close” to the optimal.
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Generalized Method of Moments Test for Overidentiying Restrictions

Testing the Validity of the Moment Restrictions

• If the parameters are overidentified by the moment equations, then
these equations imply substantive restrictions.

• As such, if the hypothesis of the model that led to the moment
equations in the first place is incorrect, at least some of the sample
moment restrictions will be systematically violated.

• When the optimal weighting matrix is used:

nq = [
√
nm̄(y,θ)′]{Est.Asy.Var[

√
nm̄(y,θ)]}−1[

√
nm̄(y,θ)]

• Under the null that the restrictions are true,

nq
d−→ χ2[L−K],

where q is the value of the objective function.
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Generalized Method of Moments Examples

The Method of Moments
Examples: Gamma distribution

• For the Gamma distribution case that we saw before, we have 4
moment conditions and 2 parameters to estimate:

m̄ =



1

n

∑n
i yi −

P̂

λ̂
1

n

∑n
i y

2
i −

P̂ (P̂ + 1)

λ̂2
1

n

∑n
i ln(yi)−Ψ(P̂ ) + ln(λ̂)

1

n

∑n
i

1

yi
− λ̂

P̂ − 1
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Generalized Method of Moments Examples

The Method of Moments
Examples: Gamma distribution

Ḡ(θ̂) =



− 1

λ̂

P̂

λ̂2

−2P̂ + 1

λ̂2
P̂ (P̂ + 1)

λ̂4
λ̂

(P̂ − 1)2
− 1

P̂ − 1

−ψ′(P̂ ) ln(λ̂) −ψ(P̂ ) 1
λ̂


Φ̂ =

var(yi) cov(yi, y
2
i ) cov(yi, 1/yi) cov(yi, ln(yi))

cov(y2i , yi) var(y2i ) cov(y2i , 1/yi) cov(y2i , ln(yi))
cov(1/yi, yi) cov(1/yi, y

2
i ) var(1/yi) cov(1/yi, ln(yi))

cov(ln(yi), yi) cov(ln(yi), y
2
i ) cov(ln(yi), 1/yi) var(ln(yi))
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Generalized Method of Moments Examples

The Generalized Method of Moments
Example: IV with more instruments than exogenous regressors

• In the previous case the optimal weighting matrix is only a function
of the data.

• Now let’s have a look into the linear regression model:

yi = x′
iβ + ϵi

• Now let’s imagine the exogeneity assumption does not hold but we
have access to L ≥ K variables correlated with X but not with ϵ.

E[mi,l] = E[zi,lϵi] = 0

• We have L equations and K unknowns.
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Generalized Method of Moments Examples

The Generalized Method of Moments
Example: IV with more instruments than exogenous regressors

m̄ =


1

n

∑n
i=1 zi,1ϵ̂i
...

1

n

∑n
i=1 zi,Lϵ̂i

 =


1

n

∑n
i=1 zi,1(yi − x′

iβ̂)

...
1

n

∑n
i=1 zi,L(yi − x′

iβ̂)


=

1

n

n∑
i=1

zi(yi − x′
iβ̂) = 0

• This is a system of L equations and K unknowns.
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Generalized Method of Moments Examples

The Generalized Method of Moments
Example: Estimate life-cycle model using consumption data

• Imagine you had a balanced panel of consumption data.

• We could estimate the model (β, σ) we saw in the first chapter using
the following moment conditions:

E
[ c−σ

i,t

c−σ
i,t+1

− β(1 + r)st

]
= E[mt(ct, ct+1, θ)] = 0

m̄(c, θ) =


1

n

∑n
i=1m0(c0, c1, θ)

...
1

n

∑n
i=1mT−1(cT − 1, cT , θ)


Note: be careful of constrained individuals as Euler equation does
not hold.
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Method of Simulated Moments

Method of Simulated Moments

• GMM requires the sample moment restrictions to have a closed form
as a function of the underlying parameters.

• Sometimes a close form solution is not available.

• Mcfadden (1989) and Pollard and Pakes (1989) propose a simulation
based algorithm to compute moment conditions.

▶ Much more computer intensive.
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Method of Simulated Moments

Method of Simulated Moments
• Suppose we have the following moment condition

E[m(yi,θ)] = 0

• However and in contrast to the previous section, we do not have a
close form solution to compute m(yi,θ).

▶ This could be because we do not have an analytic mapping between
data moments and the parameters that we want to estimate.

▶ Presence of unobserved heterogeneity.

• Given a function g such that m(y,θ) =
∫
g(y, ζ,θ)P (ζ)dζ, the

simulated method of moments simulates a large number of auxiliary
data ζ(s) so that we are able to produce an estimate of the moment
conditions

m̂k(yi,θ) =
1

S

S∑
s=1

gk(yi, ζ
s
i ,θ),
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Method of Simulated Moments

Method of Simulated Moments

• Then the objective then is to find:

θ̂ = argmin
θ

m̄′(θ,y)Wm̄(θ,y),

where

m̄(y,θ) =


1

N

∑n
i=1 m̂1(yi,θ)

...
1

N

∑n
i=1 m̂l(yi,θ)

 =


1

N

∑n
i=1

1

S

∑S
s=1 g1(yi, ζ

s
i ,θ)

...
1

N

∑n
i=1

1

S

∑S
s=1 gl(yi, ζ

s
i ,θ)
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Method of Simulated Moments

Method of Simulated Moments

• With the optimal weighting matrix we obtain:

Est.Asy.V ar[θ̂] =
1

N
(1 +

1

S
)[Ḡ′(θ̂)Φ̂−1Ḡ(θ̂)]−1

• When S is large, the variance convergences to the GMM case.

• Ḡ′(θ̂) needs generally to be computed numerically.
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Method of Simulated Moments

Method of Simulated Moments
Example: Gamma Distribution

• Imagine that we ignored the statistical properties of the gamma
distribution that we used to construct moment conditions.

• We could estimate (P, λ) by matching the sample mean of y, y2, and
ln(y) by constructing:

m̄(P̂ , λ̂) =



1

N

∑N
i=1 yi −

1

S

∑S
s=1 ys(P̂ , λ̂, ζ

s)

1

N

∑N
i=1 y

2
i −

1

S

∑S
s=1 ys(P̂ , λ̂, ζ

s)2

1

N

∑N
i=1 ln(yi)−

1

S

∑S
s=1 ln

(
ys(P̂ , λ̂, ζ

s)
)


• ys(P̂ , λ̂, ζ

s) is sampled from a gamma distribution with P̂ and λ̂.

• Don’t forget to set the seed each time you try a new set of
parameters to fix the sequence of ζs
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Method of Simulated Moments

Method of Simulated Moments
Example: Estimate life-cycle model using asset data

• Imagine you had balanced panel of asset data.

• We could estimate the model (β, σ) using by matching the mean
assets or quantiles of the asset distribution:

E[ai,t − āt(θ)] = 0

E[1ai,t<aqt (θ)
− qt] = 0

46



Method of Simulated Moments

Method of Simulated Moments
Example: unobserved heterogeneity

• Imagine a slightly different model where individuals are exposed to
shocks to their marginal utility to consume.

• The Euler equation becomes:

(1 + ϵi,t)c
σ
i,t = β(1 + r)stE[(1 + ϵi,t+1)c

σ
i,t+1]

• With consumption data and ϵ unobserved we could simulate
time-series observations for {ϵ0,i, . . . , ϵT,i} to estimate the model.

• Moment conditions would be given by:

E
[ ∫ ∫

(1 + ϵi,t)c
−σ
i,t

(1 + ϵi,t+1)c
−σ
i,t+1

− β(1 + r)stf(ϵi,t, ϵi,t+1)dϵtdϵt+1

]
= 0
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Method of Simulated Moments
Example: unobserved heterogeneity

• We could simulate a large number of ϵ
(s)
i,t for all i’s and t’s and then

construct our sample analog

m̄t(y, θ) =
1

N

N∑
i=1

1

S

S∑
s=1

(1 + ϵ
(s)
i,t )c

−σ
i,t

(1 + ϵ
(s)
i,t+1)c

−σ
i,t+1

− β(1 + r)st

→ T moment conditions

• Again, remember to set the seed of the random number generator
across different runs of θ.
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