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Introduction

Introduction

Life cycle is a very important dimension for many questions:

- Accounting for the wealth distribution.
Castañeda, Dı́az-Giménez, and Ŕıos-Rull (2009)

- Social security programs transfer resources from workers to retirees.
Fuster, İmrohoroğlu, İmrohoroğlu (2007)

- Tax reforms
Conesa, Kitao and Krueger (2009)

- Human capital accumulation and endogenous earnings inequality has a
clear life-cycle component.
Ben Porath (1967); Hugget, Ventura and Yaron (2011)

- Portfolio choice.
Cocco, Gomes, and Maenhout (2005)
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Huggett (1996)

Huggett (1996)

• Extension of Diamond (1965) OLG model.

- Multi-period.
- Lifetime uncertainty.
- Income uncertainty.

• It can also be seen as Aiyagari (1994) w/ life cycle.

• First serious attempt at accounting for the wealth distribution

• Results:

- It matches the large Gini index of the US wealth distribution.
- It does so through a counterfactually large share of people in zero
wealth and too little concentration at the top.
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Huggett (1996)

Huggett (1996)
Setup

• Life-cycle dimension:

- The average labor income changes with age.
- Households retire at age JR.
- The probability of surviving to the next period is age-dependent

In period J the probability of dying is 1

• Stationary age distribution:

- Each period a continuum of households of size N̄t are born.
- New cohorts may grow in size at a constant rate N̄t+1 = (1 + n)N̄t.
- The survival probabilities are time-independent.

• Stationary economy:

- No aggregate uncertainty.
- Wealth and income distribution of first cohort identical across time.

• Standard production side.
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Huggett (1996)

Households
Setup

• Labor market income e(z, j)w

- w is the market wage rate common to all agents.
- e(z, j) is the productivity of agents at j with idiosyncratic productivity
z.
(after retirement, age j = JR, it will be zero)

- z ∈ Z ≡ {z1, z2, . . . , zM} and follows a Markov process Γz,z′ .

• There is a PAYG social security system,pays bj = b > 0 for j ≥ JR.

• Agents can save and borrow through a risk free asset a:

- to smooth out the life-cycle earnings profile.
- to self-insure against earnings uncertainty.
- to self-insure against excessive longevity risk.

There is a lower bound a on the holdings of this asset.

More generally, we establish a ∈ a ≡ [a, ā]
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Huggett (1996)

Households
Decision Problem

• Households have preferences over consumption at different points in
time.

• At birth, expected utility is given by:

E

[
J∑

j=1

βj−1
( j∏

i=1

si

)
u(cj)

]
where si are conditional survival probabilities.

• The budget constraints they face are of the type:

cj + aj+1 = ajR+ (1− θ)e(j, z)w + T + bj

T denotes accidental bequests, θ is the social security payroll tax
and bj the social security transfer.

• The feasibility and terminal constraints:
cj ≥ 0, aj ≥ a, a1, z1 given, and aj+1 ≥ 0 if j = J
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Huggett (1996)

A Note on Social Security

• It is important to introduce a public PAYG social security as in
data:

1. It helps generate the right incentives for retirement savings:

- PAYG social security substitutes private savings
(PAYG ⇒ Lower aggregate capital in steady state)

- Public pensions are paid out as life annuities
(insurance against excessive longevity risk ⇒ lower savings incentives)

2. It helps produce a sizeable share of asset-poor households.

• In this formulation, the author does not link pensions to
contributions. This implies that there is:

- Lower uncertainty in the model economy.
- Low incentives to save for income-poor households.
- High incentives to save for income-rich households.
(The model generates inequality through a wrong channel)
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Recursive Formulation

Household Problem
Recursive Problem

• The HH problem in recursive form:

vj(a, z) =max
a′,c

{
u(c) + sjβ

∑
z′

Γz′,zvj+1(a
′, z′)

}
s.t. c+ a′ = aR+ (1− θ)e(j, z)w + bj + T

a′ ≥ a and c ≥ 0

• The standard Euler equation:

uc(aR+ (1− θ)e(j, z)w + bj + T − a′)

= sjβR
∑
z′

Γz,z′uc(a
′R+ (1− θ)e(j + 1, z′)w + bj+1 + T − a′′)

• We are looking for policy function gaj (a, z) and g
c
j(a, z)
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Household Problem

Solving the Household Problem
Backwards Induction

• Analogous to value function iteration.

• In the life-cycle problem, the Bellman equation is not stationary:
vj+1(a, z) is a different function than vj(a, z).

• Hence, we do not look for a fixed point exploiting the Contraction
Mapping Theorem.

• Instead, we solve by backwards induction:

- Period J is the last one. Hence we know that:

gaJ(a, z) = 0 and gcJ(a, z) = aR+ (1− θ)e(J, z)w + bJ + T

- Hence the value at J :

vj(a, z) = u(gcJ(a, z))

- From here on, we can solve backwards for every period j because we
know vj+1
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Household Problem

Solving the Household Problem
Backwards Induction

In period j do as follows:

• Solve:

vj = max
a′,c

{u(c) + sjβ
∑
z′

Γz,z′vj+1(a
′, z′)}

s.t. c+ a′ = aR+ (1− θ)e(j, z)w + b+ T

a′ ≥ a and c ≥ 0

where vj+1(a
′, z′) is known from j + 1 period solution

• Obtain gaj (a, z) and g
c
j(a, z).

• Obtain the value function:

vj(a, z) = u(gcj(a, z)) + sjβ
∑
z′

Γz,z′vj+1(a
′, z′)

• Move on and solve for period j − 1.
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Household Problem

Solving the Household Problem
Using the Euler Equation

• The same idea of backwards induction can be applied in the Euler
equation when looking for the policy function.

• Let’s discretize the space a of our endogenous state variable into a
dimension-I real-valued vector ã = {ã1, ã2, . . . , ãI}.

• Let’s define J M × I matrices g̃aj , where M is the number of
elements of the earnings space Z and I is the number of elements of
ã.

• Every element {m, i} of the matrix g̃aj states the choice a′ for an
individual of type {zm, ãi} at age j.

• Our approximation ĝaj to the true policy function gaj is constructed
by linear interpolation of g̃aj
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Household Problem

Solving the Household Problem
Using the Euler Equation

• Let’s define
dj(w, z) = (1− θ)e(j, z)w + bj + T

as the non-financial income for individual of age j with shock z

• Then, we can write the Euler equation as,

0 = uc[dj(w, z) +Ra− ĝaj (z, a; g̃
a
j )]−

sjβR
∑
z′

Γ(z, z′)uc[dj+1(w, z
′) +Rĝaj (z, a; g̃

a
j )− ĝaj+1(z

′, ĝaj (z, a; g̃
a
j ); g̃

a
j+1)]

• Knowing the matrix g̃aj+1 the Euler equation delivers a matrix g̃aj :

- At J , agents are constrained so they are not on their Euler equation:
we know that g̃aJ = 0

- Then at j = J − 1, knowing g̃aJ we can solve for g̃aJ−1

- Iterating backwards, we can solve by all g̃aj j with knowledge of g̃aj+1
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Household Problem

Solving the Household Problem
Using the Euler Equation

1. Obtain g̃aJ . Set j = J − 1.

2. Obtain g̃aj given g̃aj+1

- For every pair {zl, ãi} ∈ Z × ã we look for a′ ∈ a that solves the
following non-linear equation:

0 =uc[dj(w, z) +Rãi − a′]

− sjβR
∑
z′

Γ(z, z′)uc[dj+1(w, z
′) +Ra′ − ĝaj+1(z

′, a′; g̃aj+1)]

- Notice that this is just one equation in one unknown, a′, which is not
restricted to lie on the grid ã. We set g̃aj (m, i) = a′.

- Doing this for all possible values zm ∈ Z and all possible values ãi ∈ ã
we obtain the whole matrix g̃aj .

3. Set j = j − 1 and go back to step 2.
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Firm’s Problem

Firm’s Problem

• The firm’s problem is very standard.

• We assume Cobb-Douglas production function.

• Firm’s maximize:

max
L,K

KαL1−α − (r + δ)K − wL

• FOC:

αKα−1L1−α = r + δ

(1− α)KαL−α = w

• The wage is a function of the interest rate and L which is given
because of inelastic labor supply.
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Equilibrium

Steady State Equilibrium
Definition

A steady state equilibrium for this economy is:

- a set of functions {vj , gaj , gcj}Jj=1

- a pair of aggregate allocations K and L (in per capita terms)

- an amount of transfers T (in per capita terms)

- a series of probability measures {µj}Jj=1

- a series of transition functions {Qj}Jj=1

- a pair of prices {w, r}

- a pair of social security parameters {θ, b}
such that
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Equilibrium

Steady State Equilibrium
Definition

• Households solve their optimization problem.
That is to say, given a pair of prices {w, r} and social security
parameters {θ, b}, the functions {vj , gaj , gcj}Jj=1 solve the hh problem.

• Firms solve their optimization problem
Factor prices are given by the first order conditions of the firm:

R = 1 + FK(K/L)− δ and w = FL(K/L)

• Labor market clears
JR−1∑
j=1

ψj

∫
Z×a

e(z, j)dµj = L

• Capital market clears

J∑
j=1

ψj

∫
Z×a

gaj (z, a)dµj = K ′ = K
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Equilibrium

Steady State Equilibrium
Definition

• The social security administration is in balance

θwL = b

J∑
j=JR

ψj

• Accidental bequests are given back as transfers,
J∑

j=1

ψj(1− sj)

∫
Z×a

Rgaj (z, a)dµj = T ′ = T

• The measures of households at each age is given by,

µj+1(B) =

∫
Z×a

Qj(b, B)dµj and µ1, given

• The transition functions Qj arise from the optimal behavior of
households and the markov chain Γ.

• Goods market clears:

F (K,L) + (1− δ)K =

J∑
j=1

ψj

∫
Z×a

(gaj (z, a) + gcj(z, a))dµj
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Equilibrium

Calibration

• Demographics
Life tables to obtain sj , average population growth to obtain n

• Income process
Estimate from panel data: deterministic age component and residual

• Social security b and θ
Match average replacement rate in the data and budget balance

• Technology parameters δ, α
I/Y and capital share

• Preferences parameters σ, β
Standard values off the shelves

• Borrowing limit, a

• Initial conditions: µ1
Zero wealth and earnings dispersion of young households.
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Equilibrium

Calibration
Social Security

• The social security payroll tax θ is calibrated analytically.

- Let’s call ω the average replacement ratio in the data.
- Then, we want the model to satisfy

ω =
b

wL

JR−1∑
j=1

ψj and θwL = b

J∑
j=JR

ψj

- Both expressions together give

θ = ω

∑J
j=JR

ψj∑JR−1
j=1 ψj

▶ So, with ω from the data we recover analytically the payroll tax θ

• The pension b is calibrated together with the equilibrium algorithm
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Equilibrium

Steady State Equilibrium
How to find it?

1. Algorithm starts at iteration k with a guess on rk

2. Obtain prices Kd
k , wk and the social security parameter bk

Rk = 1 + FK(Kd
k/L)− δ and wk = FL(Kk/L) and θwkL = bk

J∑
j=JR

ψj

3. Iterate to find accidental bequests

3.1 Guess transfers T g
k

3.2 Solve hh problem with T g
k

3.3 Aggregate and compute accidental bequests T g+1
k

3.4 If they are equal go on. Otherwise set T g+1
k = T g

k and come back to
(3.2)

4. Aggregate household savings Ks
k =

∑J
j=1 ψj

∫
Z×a g

a
j (z, a)dµj

5. If |Ks
k −Kd

k | < ϵ, stop. Otherwise set Rk+1 = 1+FK(Ks
k/L)− δ and

back to 2
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Equilibrium

Aggregating
In Theory

• We keep track of the population in the economy by means of

- ψj , the fraction of individuals with age j (exogenous).

- µj(B), the probability measure that tells us the density of individuals
of age j in any subset B ⊂ Z × a of the state space.

- The law of motion for µj is given by,

µj+1(B) =

∫
Z×a

Qj(b, B)dµj

- Hence, note that there are J distributions µj , one for every age group.

- Notice that we need to give an initial condition µ1, which describes the
joint distribution of assets and labor earnings of every cohort that
enters the labor market.
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Equilibrium

Aggregating
In Practice: Monte-Carlo Simulation

• Take an initial finite sample µ̂1
(This should be a calibration sample)

• At any period j, take µ̂j , use the ĝaj , the Γz′,z, and a random
number generator to compute µ̂j+1.

• In this manner, you end up with J distributions µ̂j .

• Then, the ψj can be computed deterministically
(there is no need to kill anybody)

- Compute the cross-sectional age distribution at period t:

ψ̃t,j+1 = sjψ̃t,j(1 + n)−1 and ψ̃t,1 = N̄t

- And then normalize by population size such that the ψj sum up to one:

ψj=a =
ψ̃j=a∑J
j=1 ψ̃j
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