Life-Cycle Models with Heterogeneous Agents

Jesús Bueren

EUI, 2022

[Introduction](#page-1-0)

Introduction

Life cycle is a very important dimension for many questions:

- Accounting for the wealth distribution. Castañeda, Díaz-Giménez, and Ríos-Rull (2009)
- Social security programs transfer resources from workers to retirees. Fuster, İmrohoroğlu, İmrohoroğlu (2007)
- Tax reforms
	- Conesa, Kitao and Krueger (2009)
- Human capital accumulation and endogenous earnings inequality has a clear life-cycle component. Ben Porath (1967); Hugget, Ventura and Yaron (2011)
- Portfolio choice.
	- Cocco, Gomes, and Maenhout (2005)

Huggett (1996)

- Extension of Diamond (1965) OLG model.
	- Multi-period.
	- Lifetime uncertainty.
	- Income uncertainty.
- It can also be seen as Aiyagari (1994) w/ life cycle.
- First serious attempt at accounting for the wealth distribution
- Results:
	- It matches the large Gini index of the US wealth distribution.
	- It does so through a counterfactually large share of people in zero wealth and too little concentration at the top.

Huggett (1996)

Setup

- Life-cycle dimension:
	- The average labor income changes with age.
	- Households retire at age J_R .
	- The probability of surviving to the next period is age-dependent In period J the probability of dying is 1
- Stationary age distribution:
	- Each period a continuum of households of size \bar{N}_t are born.
	- New cohorts may grow in size at a constant rate $\bar{N}_{t+1} = (1+n)\bar{N}_t$.
	- The survival probabilities are time-independent.
- Stationary economy:
	- No aggregate uncertainty.
	- Wealth and income distribution of first cohort identical across time.
- Standard production side.

Households

Setup

- Labor market income $e(z, j)w$
	- w is the market wage rate common to all agents.
	- $-e(z, j)$ is the productivity of agents at j with idiosyncratic productivity z.
		- (after retirement, age $j = J_R$, it will be zero)
	- $z \in \mathbf{Z} \equiv \{z_1, z_2, \ldots, z_M\}$ and follows a Markov process $\Gamma_{z,z'}$.
- There is a PAYG social security system, pays $b_i = b > 0$ for $j \geq J_R$.
- Agents can save and borrow through a risk free asset a:
	- to smooth out the life-cycle earnings profile.
	- to self-insure against earnings uncertainty.
	- to self-insure against excessive longevity risk.

There is a lower bound a on the holdings of this asset.

More generally, we establish $a \in \mathbf{a} \equiv [\underline{a}, \overline{a}]$

Households

Decision Problem

- Households have preferences over consumption at different points in time.
- At birth, expected utility is given by:

$$
E\left[\sum_{j=1}^{J}\beta^{j-1}\left(\prod_{i=1}^{j}s_{i}\right)u(c_{j})\right]
$$

where s_i are conditional survival probabilities.

• The budget constraints they face are of the type:

$$
c_j + a_{j+1} = a_j R + (1 - \theta)e(j, z)w + T + b_j
$$

T denotes accidental bequests, θ is the social security payroll tax and b_i the social security transfer.

• The feasibility and terminal constraints: $c_j \geq 0$, $a_j \geq a$, a_1, z_1 given, and $a_{j+1} \geq 0$ if $j = J$

A Note on Social Security

- It is important to introduce a public PAYG social security as in data:
	- 1. It helps generate the right incentives for retirement savings:
		- PAYG social security substitutes private savings $(PAYG \Rightarrow Lower$ aggregate capital in steady state)
		- Public pensions are paid out as life annuities (insurance against excessive longevity risk \Rightarrow lower savings incentives)
	- 2. It helps produce a sizeable share of asset-poor households.
- In this formulation, the author does not link pensions to contributions. This implies that there is:
	- Lower uncertainty in the model economy.
	- Low incentives to save for income-poor households.
	- High incentives to save for income-rich households. (The model generates inequality through a wrong channel)

[Recursive Formulation](#page-7-0)

Household Problem

Recursive Problem

• The HH problem in recursive form:

$$
v_j(a, z) = \max_{a',c} \left\{ u(c) + s_j \beta \sum_{z'} \Gamma_{z',z} v_{j+1}(a', z') \right\}
$$

s.t. $c + a' = aR + (1 - \theta)e(j, z)w + b_j + T$
 $a' \geq \underline{a}$ and $c \geq 0$

• The standard Euler equation:

$$
u_c(aR + (1 - \theta)e(j, z)w + b_j + T - a')
$$

= $s_j \beta R \sum_{z'} \Gamma_{z,z'} u_c(a'R + (1 - \theta)e(j + 1, z')w + b_{j+1} + T - a'')$

• We are looking for policy function $g_j^a(a, z)$ and $g_j^c(a, z)$

Solving the Household Problem

Backwards Induction

- Analogous to value function iteration.
- In the life-cycle problem, the Bellman equation is not stationary: $v_{i+1}(a, z)$ is a different function than $v_i(a, z)$.
- Hence, we do not look for a fixed point exploiting the Contraction Mapping Theorem.
- Instead, we solve by backwards induction:
	- Period J is the last one. Hence we know that:

$$
g_J^a(a, z) = 0
$$
 and $g_J^c(a, z) = aR + (1 - \theta)e(J, z)w + b_J + T$

- Hence the value at J:

$$
v_j(a,z)=u(g^c_J(a,z))\,
$$

- From here on, we can solve backwards for every period j because we know v_{i+1}

Solving the Household Problem

Backwards Induction

In period i do as follows:

• Solve:

$$
v_j = \max_{a',c} \{ u(c) + s_j \beta \sum_{z'} \Gamma_{z,z'} v_{j+1}(a',z') \}
$$

s.t.
$$
c + a' = aR + (1 - \theta)e(j, z)w + b + T
$$

$$
a' \geq \underline{a} \text{ and } c \geq 0
$$

where $v_{j+1}(a', z')$ is known from $j+1$ period solution

- Obtain $g_j^a(a, z)$ and $g_j^c(a, z)$.
- Obtain the value function:

$$
v_j(a, z) = u(g_j^c(a, z)) + s_j \beta \sum_{z'} \Gamma_{z, z'} v_{j+1}(a', z')
$$

• Move on and solve for period $j-1$.

Solving the Household Problem Using the Euler Equation

- The same idea of backwards induction can be applied in the Euler equation when looking for the policy function.
- Let's discretize the space a of our endogenous state variable into a dimension-*I* real-valued vector $\tilde{a} = {\tilde{a}_1, \tilde{a}_2, \ldots, \tilde{a}_I}.$
- Let's define $J \mid M \times I$ matrices \tilde{g}_j^a , where M is the number of elements of the earnings space Z and I is the number of elements of \tilde{a} .
- Every element $\{m, i\}$ of the matrix \tilde{g}_j^a states the choice a' for an individual of type $\{z_m, \tilde{a}_i\}$ at age j.
- Our approximation \hat{g}_j^a to the true policy function g_j^a is constructed by linear interpolation of \tilde{g}_j^a

Solving the Household Problem Using the Euler Equation

• Let's define

$$
d_j(w, z) = (1 - \theta)e(j, z)w + b_j + T
$$

as the non-financial income for individual of age j with shock z

Then, we can write the Euler equation as,

$$
0 = u_c[d_j(w, z) + Ra - \hat{g}_j^a(z, a; \tilde{g}_j^a)] -
$$

$$
s_j \beta R \sum_{z'} \Gamma(z, z') u_c[d_{j+1}(w, z') + R \hat{g}_j^a(z, a; \tilde{g}_j^a) - \hat{g}_{j+1}^a(z', \hat{g}_j^a(z, a; \tilde{g}_j^a); \tilde{g}_{j+1}^a)]
$$

- Knowing the matrix \tilde{g}_{j+1}^a the Euler equation delivers a matrix \tilde{g}_j^a :
	- At J, agents are constrained so they are not on their Euler equation: we know that $\tilde{g}_{J}^{a}=0$
	- Then at $j = J 1$, knowing \tilde{g}_J^a we can solve for \tilde{g}_{J-1}^a
	- Iterating backwards, we can solve by all \tilde{g}_j^a j with knowledge of \tilde{g}_{j+1}^a

Solving the Household Problem

Using the Euler Equation

- 1. Obtain \tilde{g}_J^a . Set $j = J 1$.
- 2. Obtain \tilde{g}_j^a given \tilde{g}_{j+1}^a
	- For every pair $\{z_l, \tilde{a}_i\} \in \mathbf{Z} \times \tilde{a}$ we look for $a' \in \mathbf{a}$ that solves the following non-linear equation:

$$
0 = u_c[d_j(w, z) + R\tilde{a}_i - a']
$$

- $s_j \beta R \sum_{z'} \Gamma(z, z') u_c[d_{j+1}(w, z') + Ra' - \hat{g}_{j+1}^a(z', a'; \tilde{g}_{j+1}^a)]$

- Notice that this is just one equation in one unknown, a' , which is not restricted to lie on the grid \tilde{a} . We set $\tilde{g}_j^a(m, i) = a'$.
- Doing this for all possible values $z_m \in \mathbf{Z}$ and all possible values $\tilde{a}_i \in \tilde{a}$ we obtain the whole matrix \tilde{g}_j^a .
- 3. Set $j = j 1$ and go back to step 2.

[Firm's Problem](#page-13-0)

Firm's Problem

- The firm's problem is very standard.
- We assume Cobb-Douglas production function.
- Firm's maximize:

$$
\max_{L,K} K^{\alpha} L^{1-\alpha} - (r+\delta)K - wL
$$

• FOC:

$$
\alpha K^{\alpha - 1} L^{1 - \alpha} = r + \delta
$$

$$
(1 - \alpha) K^{\alpha} L^{-\alpha} = w
$$

• The wage is a function of the interest rate and L which is given because of inelastic labor supply.

Steady State Equilibrium Definition

A steady state equilibrium for this economy is:

- a set of functions $\{v_j, g_j^a, g_j^c\}_{j=1}^J$
- a pair of aggregate allocations K and L (in per capita terms)
- an amount of transfers T (in per capita terms)
- a series of probability measures $\{\mu_j\}_{j=1}^J$
- a series of transition functions $\{Q_j\}_{j=1}^J$
- a pair of prices $\{w, r\}$
- a pair of social security parameters $\{\theta, b\}$ such that

Steady State Equilibrium

Definition

- Households solve their optimization problem. That is to say, given a pair of prices $\{w, r\}$ and social security parameters $\{\theta, b\}$, the functions $\{v_j, g_j^a, g_j^c\}_{j=1}^J$ solve the hh problem.
- Firms solve their optimization problem Factor prices are given by the first order conditions of the firm:

$$
R = 1 + F_K(K/L) - \delta \text{ and } w = F_L(K/L)
$$

• Labor market clears

$$
\sum_{j=1}^{J_R-1} \psi_j \int_{\mathbf{Z}\times a} e(z,j) d\mu_j = L
$$

• Capital market clears

$$
\sum_{j=1}^{J} \psi_j \int_{\mathbf{Z} \times a} g_j^a(z, a) d\mu_j = K' = K
$$

Steady State Equilibrium

Definition

• The social security administration is in balance

$$
\theta wL = b \sum_{j=J_R}^{J} \psi_j
$$

• Accidental bequests are given back as transfers,

$$
\sum_{j=1}^{J} \psi_j (1 - s_j) \int_{\mathbf{Z} \times a} R g_j^a(z, a) d\mu_j = T' = T
$$

• The measures of households at each age is given by,

$$
\mu_{j+1}(B) = \int_{\mathbf{Z} \times a} Q_j(b, B) d\mu_j
$$
 and μ_1 , given

- The transition functions Q_i arise from the optimal behavior of households and the markov chain Γ.
- Goods market clears:

$$
F(K, L) + (1 - \delta)K = \sum_{j=1}^{J} \psi_j \int_{\mathbf{Z} \times a} (g_j^a(z, a) + g_j^c(z, a)) d\mu_j
$$

Calibration

• Demographics

Life tables to obtain s_i , average population growth to obtain n

- Income process Estimate from panel data: deterministic age component and residual
- Social security b and θ Match average replacement rate in the data and budget balance
- Technology parameters δ , α I/Y and capital share
- Preferences parameters σ , β Standard values off the shelves
- Borrowing limit, a
- Initial conditions: μ_1 Zero wealth and earnings dispersion of young households.

Calibration

Social Security

- The social security payroll tax θ is calibrated analytically.
	- Let's call ω the average replacement ratio in the data.
	- Then, we want the model to satisfy

$$
\omega = \frac{b}{wL} \sum_{j=1}^{J_R - 1} \psi_j \text{ and } \theta wL = b \sum_{j=J_R}^{J} \psi_j
$$

- Both expressions together give

$$
\theta = \omega \frac{\sum_{j=J_R}^J \psi_j}{\sum_{j=1}^{J_R-1} \psi_j}
$$

 \triangleright So, with ω from the data we recover analytically the payroll tax θ • The pension b is calibrated together with the equilibrium algorithm

Steady State Equilibrium How to find it?

- 1. Algorithm starts at iteration k with a guess on r_k
- 2. Obtain prices K_k^d , w_k and the social security parameter b_k

$$
R_k = 1 + F_K(K_k^d/L) - \delta \text{ and } w_k = F_L(K_k/L) \text{ and } \theta w_k = b_k \sum_{j=J_R}^{J} \psi_j
$$

- 3. Iterate to find accidental bequests
	- 3.1 Guess transfers T_k^g
	- 3.2 Solve hh problem with T_k^g
	- 3.3 Aggregate and compute accidental bequests T_k^{g+1}
	- 3.4 If they are equal go on. Otherwise set $T_k^{g+1} = T_k^g$ and come back to (3.2)
- 4. Aggregate household savings $K_k^s = \sum_{j=1}^J \psi_j \int_{\mathbf{Z}\times\mathbf{a}} g_j^a(z, a) d\mu_j$
- 5. If $|K_k^s K_k^d| < \epsilon$, stop. Otherwise set $R_{k+1} = 1 + F_K(K_k^s/L) \delta$ and back to 2

J

Aggregating In Theory

- We keep track of the population in the economy by means of
	- $-\psi_i$, the fraction of individuals with age j (exogenous).
	- $\mu_j(B)$, the probability measure that tells us the density of individuals of age j in any subset $B \subset \mathbf{Z} \times \mathbf{a}$ of the state space.
	- The law of motion for μ_j is given by,

$$
\mu_{j+1}(B) = \int_{\mathbf{Z}\times a} Q_j(b, B) d\mu_j
$$

- Hence, note that there are J distributions μ_i , one for every age group.
- Notice that we need to give an initial condition μ_1 , which describes the joint distribution of assets and labor earnings of every cohort that enters the labor market.

Aggregating

In Practice: Monte-Carlo Simulation

- Take an initial finite sample $\hat{\mu}_1$ (This should be a calibration sample)
- At any period j , take $\hat{\mu}_j$, use the \hat{g}_j^a , the $\Gamma_{z',z}$, and a random number generator to compute $\hat{\mu}_{j+1}$.
- In this manner, you end up with J distributions $\hat{\mu}_j$.
- Then, the ψ_i can be computed deterministically (there is no need to kill anybody)
	- Compute the cross-sectional age distribution at period t:

$$
\tilde{\psi}_{t,j+1} = s_j \tilde{\psi}_{t,j} (1+n)^{-1}
$$
 and $\tilde{\psi}_{t,1} = \bar{N}_t$

- And then normalize by population size such that the ψ_i sum up to one:

$$
\psi_{j=a} = \frac{\tilde{\psi}_{j=a}}{\sum_{j=1}^{J} \tilde{\psi}_j}
$$