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Introduction

Introduction

¢ In the lecture we are going to give an overview of different
methods for solving recursive problems (not only life cycle).

¢ In the first part, we are going to cover some tricks to speed up and
increase accuracy of the solution when using state-space methods.

e In the second part, we will see projection methods.
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State-Space Methods

Discrete Approximation

Simple Iterative Procedure

e Take the problem faced by an agent in the life cycle model 2
periods before certain death:

vs-1(a) =max{u(c) + s;60s(a')}
st.c+a =aR+b+T

* The function u(c) is strictly concave and twice continuously
differentiable.

e The way we solved this in first-year macro is by iterating for each
value of a; € {ay, ..., angx} through all values of a;» € {ag, -, Gmaz }
where,

Amar = G R+b0+T
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State-Space Methods

Discrete Approximation
Exploiting Monotonicity

¢ As you might have guessed, this is a not very smart algorithm.
e We can do much better if we exploit the structure of the problem.

e We can exploit the monotonicity of the policy function i.e

a; > a; = 95_1(a;) > 95_1(ay)

Bueren (EUI, 2024) Numerical Methods 4/53



State-Space Methods

Discrete Approximation
Exploiting Concavity
e Second, we can shorten the number of computations in the
maximization since the function

fld)=uwaR+b+T—d)+ s;jBvs(a)
is strictly concave.

e A strictly concave function defined over a grid of nkk points either
takes its maximum at one of the boundary points or in the interior
of the grid.

> In the first case the function is decreasing (increasing) over the
whole grid, if the maximum is the first (last) point of the grid.

» In the second case the function is first increasing and then
decreasing.

¢ As a consequence we can take the mid-point of the grid a; and the
grid point next to it a;+1 and determine whether the maximum is
to the right of a;.
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State-Space Methods

Discrete Approximation
Binary Search Algorithm

e Find the maximum of a strictly concave function f(z) defined over
a grid {x1,...,zn}

1. Select two points: 4; = floor

<7lmm + Zm““”) and i, =i, + 1

2. If f(xi,) > f(xi,) set imin = 1 otherwise set iin = iy

3. If 4z — imin = 2, stop and choose the largest element among
f(zi ), f(zi . +1), and f(z;,,,,). Otherwise return to Step 2.
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State-Space Methods  Policy Function Iteration

Policy Function Iteration

¢ In infinite horizon models, we use value function iteration to find
the fixed point of the operator.

e Value function iteration is nevertheless a slow procedure since it
converges linearly at the rate 3:

[0 — "] < Bllv* — o7

e Howard’s improvement algorithm or policy function iteration is a
method to enhance convergence.

e Each time a policy function is computed, we solve for the value
function that would occur, if the policy were followed forever.

e This value function is then used in the next step to obtain a new
policy function.
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State-Space Methods  Policy Function Iteration

Policy Function Iteration

» What is the value function associated with a given g*(k, 2)?

v(ki, 2m) = w(zm f (ki) = ki) + 8 H(zlzm)v(ky, 2),

where k; = g*(ki, zm).
e In matrix notation:
vecwv = vecu + SQ vecv
with solution:
vecv = [I — Q] 'u

o If the state is space is large, computing the inverse of [I — Q]!
can be very expensive.
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State-Space Methods  Policy Function Iteration

Modified Policy Function Iteration

e Instead of computing the inverse, use a value function which is
close but not exactly the one associated with the proposed policy
function.

e Run a k£ number of times the following code:

w' = o°
vecw' ™ = vecu + BQ vec w!
ol — wht!
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State-Space Methods Interpolation Between Grid Points

Interpolation Between Grid Points

e In case the relevant state space is large, the computation time on a
grid with many points may become a binding constraint.

e We, thus, look for methods that increase precision for a given
number of grid-points without a compensating rise in computation
time.

e How do we accomplish this?
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State-Space Methods Interpolation Between Grid Points

Interpolation Between Grid Points

e Imagine that using the first year macro code, we found that
a’ = a; is optimal for the set of points in the grid.

¢ Since the value function is increasing and concave, the true
maximizer must lie in the interval [a;_1, aj4+1].

o If we were able to evaluate the rhs of the Bellman equation at all
a' € laj_1,a;41), we could pick the maximizer of the function in
this interval.

e Two things are necessary to achieve this goal:

1. an approximation of the value function over the interval [a;_1,a;j41]

2. a method to locate the maximum of a continuous function.
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State-Space Methods Interpolation Between Grid Points

Interpolation Between Grid Points

Linear Interpolation

Linear interpolation is simple and shape preserving.

This property is important, if we use interpolation to approximate
the value function, which is known to be concave and increasing.

Linear interpolation uses the point:

; f(x2) + f(z1)

f(@) = fa1) + — (z — 1)
T2 I

Thus, f is approximated by the line through (z1, f(x1)) and
(22, f(22)).
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State-Space Methods Interpolation Between Grid Points

Interpolation Between Grid Points
Cubic Splines

e Sometimes we are interested in preserving the smoothness of a
function.

e Assume that we approximate the function f(x) by a function s(z)
over the grid @ = [zg,x1, ..., z,] with corresponding function

values y = [yo,y1, - - yn] with y; = f(z:).

e On each subinterval [x;_1,x;], we will approximate f(x) with a
cubic function s(z) = a; + bz + c;x? + dix3
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State-Space Methods  Interpolation Between Grid Points

Interpolation Between Grid Points
Cubic Splines
e We impose that:
1. The approximation is exact at the grid-points, y; = s(z;):

yi:ai+bizi+cizf+dix?, i=1,...,n

Yi = Qi1 + bip1® + i1l g +diazl, i=0,...,n—1
2. The first and the second derivatives agree on the nodes:

b; + 2¢;x; + 3d11‘$ e bi+1 + 2¢i417 + 3di+1$?, i1=1,....,n—1
2¢; + 6d;x; = 2¢i41 +6djp1xy, i=1,...,n—1
These conditions amount to 4n — 2 linear equations in the 4n

unknowns a;, b;, ¢;, d; leaving us two conditions short of fixing the
coefficients.
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State-Space Methods Interpolation Between Grid Points

Interpolation Between Grid Points
Cubic Splines

e Two possible solutions:
1. Natural spline:

s"(xg) = 8" (xn) =0

2. Secant Hermite spline: use the slope of the secant lines over [z, 1]
and [x,_1,x,] respectively:

S/(Io) = u == b1 + 2011’0 + 3d11‘(2)

1 — Zo
§(xyp) = In ZYn1 _ by + 2cpxy + 3dp2?
Tn — Tp—1
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State-Space Methods Locating the Maximum

Locating the Maximum

¢ Using these interpolation methods allows us to approximate the
rhs of the Bellman equation by a continuous function:

O(K) = u(f(Ki) — K) + fo(K)

o In the interval [K;_j, K; 1] the maximum of ¢(K) is located
either at the end-points or in the interior.
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State-Space Methods Locating the Maximum

Locating the Maximum
Golden Section Search

This method locates the maximum of a single peaked function
f(z) in the interval I = [A, D].

The idea is to shrink the interval around the true maximizer x* in
successive steps until the midpoint of the remaining interval is a
good approximation to x*.

¢ Imagine we have two other function evaluations at points B and C

- If f(B) > f(C) = look in [A, C]
- If f(B) < f(C) = look in [B, D]

How to choose B and C?
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State-Space Methods Locating the Maximum

Locating the Maximum

Golden Section Search

e Choose them such that AC = BD:

1. AD = AC +CD

i _co
"AD  AC
substitute 1 in 2:
AC CD

AC+CD ~ AC
define p = i solve for p:
p=(V5-1)/2

Bueren (EUI, 2024) Numerical Methods 18 /53



Projection Methods

Projection Methods

e When solving DP problems, we are trying to solve for a function f
(the value function or policy function) that satisfies a condition
(Bellman equation or euler equation).

e Projection methods provide approximate solutions to functional
equations.

¢ Different from R"”, however, function spaces have infinite
dimensions.

* Projection methods use a family of polynomials P := {¢;}3°, and
approximate f by a finite sum of members of this family.
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Projection Methods

Motivating Example

e Consider the ordinary differential equation:
f'(@) + f(z) =0, f(0) =1,

the solution is given by: f(x) =e™".
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Projection Methods

Definitions

e In order to approximate any function we choose:

- A basis V.
- An order of approximation
- An interval over which we approximate the function

¢ Definition: Basis
A subset U of a vector space V' is a basis if all b € U are linearly
independent and all v € V' can be expressed as a linear
combination of the elements of .

e The idea is then is to find v to approximate the funcion f:

fla) = fz,7) =) vt(x)
=1
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Projection Methods

Definitions

e Consider the set of all continuous functions that map the interval
[a, b] to the real line denoted by C|a, b].

e This set is a vector space and monomials build a base ¥,,, for this
space i.e. every element of the set can be represented by:

flo)=> '
=0

e For this reason it is common to use a linear combination of the
first p members of this base to approximate a continuous function

f(t) in Cla,b]
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Projection Methods

Back to Example

e Back to our example, let’s approximate f(x) using the basis of
monomials with the first 3 members (p=3).

N

f(@) =0+ mnz+ 722 (0 =1 since f(0) =1)
e Using the differential equation, let us define the residual function:
R(y, 1) =m + 2722 + 1 + Mz + ya?

e This function describes the error that results if we use our guess of
the solution instead of the true solution in the functional equation.

e We want 7 to minimize R(y,x) for all z € [a, b] given some metric.
This step is known as the projection against a given basis.
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Projection Methods

Projections Direction

e Generally, we can write a projection as a weighting function p(x)
which together with R define an inner product given by:

[pr.a)ds

T

e We look for a v such that:

/p(x)R(’y, x)dx ~0

¢ Depending on the projection that we use we will obtain different
results.
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Projection Methods

Least Squares Projection

e Choose as projection direction the gradient of the loss function:

OR(v,x)

p(z) = T

e The implied problem would be equivalent to solving:
min/R('y, )2 dx
v T

¢ By FOCs using Leibniz integral rule:

OR(y, x) _
/x i R(y,z)dr =0
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Projection Methods

Least Squares Projection

Example

e In the example, for the interval [0, 2], the least squares projection
is found by solving:

2
mvln/ (L4+7(1+2) + 72z + 2%))*d>
0
with FOCs:
2
/ (14 2)(1 4+ (1 +2) + (22 + 22))da = 0
0

/2(21’+ 214y (14 z) + 722z + 22))dz =0
0
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Projection Methods

Dirac Delta Projection / Collocation

Discretize the state space = into a grid of size p
T ={%0,Z1,...,Tp-1}.

e Projection direction are given by the Dirac deltas:

1 ifa::@
pi(ﬂf)Z{

0 otherwise

This is a fancy way to describe the following: we want the
Residual function to be satisfied exactly at p chosen points of z.

We therefore obtain a system of p equations and p unknowns.
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Projection Methods

Dirac Delta Projection / Collocation
Example

¢ We may want that the residual function is equal to zero at a given
set of points:

e Suppose we choose x1 = 1 and 9 = 2.

e This gives the linear system:

—1=27+3%
—1=37+8%
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Projection Methods

Galerkin Projection

e Projection direction is given by:

pi(x) = Yi(z)

e There we solve for:
/ Gi(@)R(y, 2)dz = 0

e Which is also a system of p equations (one for each member of the
basis) and p unkowns.
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Projection Methods

Galerkin Projection

Example

e For our example we would have:
2
/ xR(y,z)dr =0
0

2
/ 2*R(vy, z)dz = 0
0
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Projection Methods

Orthogonal Bases

e This is how the first six elements of the basis of monomials look
like.

s
08 1
06t 1
041 1
02t 1

ol ]
02 1
04 1
0.6 1
081 1

-1 B

-1 -08 -06 -04 -02 0 02 04 06 08 1

e The elements of this basis share a lot of information. This makes
the numerical solutions suffer in terms of precision.
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Projection Methods

Orthogonal Bases

Definition

¢ Definition: Orthogonality
A family of elements ¥ = {4} C V is orthogonal with respect to
the inner product < -,- > if Vi # j, < ¢;,9%; >=0

¢ Definition: Orthogonal basis
A subset ¥ of an inner product vector space V is an orthogonal
basis of V' if it is a basis and all its elements are orthogonal.

e The general idea is that elements of these bases share much less
information making the numerical solutions much more precises.
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Projection Methods

Orthogonal Bases

Chebyshev polynomials

Define the element ¢ as,

1;(x) = cos(i arccos(x))

They share much less information than the monomials.

e They can also be generated recursively,

i =0, ¥;i(x)
7 = 1, wz(flj)
i 22, Yi(z) =2athi1(z) — hi2(z)

1

X

Chebyshev polynomials are defined in the interval [—1; 1], but this
is not a limitation as long as the domain of f(z) is bounded.
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Projection Methods

Orthogonal Bases

Chebyshev polynomials

e This is how the first six elements of the basis of the Chebyshev
polynomials look like.

1

0.8

0.6

0.4r

02r

ot

0.2

-0.4

-0.6

-0.8

-1

-1 -08 -06 -04 -02 0 02 04 06 08 1

Bueren (EUI, 2024) Numerical Methods 34 /53



Projection Methods

Neoclassical Growth Model

e Let’s return to our economic model of reference: the Neoclassical
Growth Model.

e And let’s go to our preferred equation: the Euler Equation.

uc(c) = Bf'(f(K) — c)uc(c)

e Assume we want to solve this model in terms of the policy
function C(K).
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Projection Methods

Neoclassical Growth Model

e Letting C (7, K) denote the approximate solution, the residual
function may be computed from:

_ u/(é(’y’K)) _ ! K _C« K
ROK) = ey AU = C0nK)
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Projection Methods

Neoclassical Growth Model

Collocation

¢ Computing the solution using collocation is relatively straight
forward.

¢ You need to choose p number of points for which to solve the
Euler equation.

» The Chebyshev interpolation theorem shows that Chebyshev zeros
minimize the maximal interpolation error (Chebyshev collocation).

e Chebyshev zeros:

2k a+b
b—a b-—a

with, k; = . ki €[0,1], k; € [a, b]
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Projection Methods

Neoclassical Growth Model

Least Squares

¢ In case we choose the least squares projection, we need to compute
the following integral:

b
min / R(v, k)*dk
7 Ja

e How to compute this integral?
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Projection Methods

Numerical Integration

e There are two ways of computing an integral f: f(z)dzx
numerically:

1. Newton-Cotes Formulas

2. Gaussian Formulas

Bueren (EUI, 2024) Numerical Methods 39/53



Projection Methods

Numerical Integration

Newton-Cotes Formulas

e The first idea is to approximate the function f(z) by piecewise
polynomials and integrate the polynomials over subdomains of

[a, b].

b b—a
[ #@do =% @) + 7o)

o If we use higher-order polynomials or a higher number of
subdomains, more generally, we derive a Newton-Cotes formula for

the approximation of the integral which evaluates the integral at a
number of points:

b n
/ f(z)dx ~ Zaif(xi)
a i=1
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Projection Methods

Numerical Integration

Gaussian Formulas

e In Gaussian formulas, we choose weights and nodes optimally in
order to provide a good approximation of ff f(x)dx.

e Choosing an orthogonal basis for approximating f(x) is important
since it can be shown that we can compute the integral of a
polynomial of degree 2n — 1 exactly.

¢ Gauss-Chebyshev quadrature formula:

b T —a n
/ f(Z)dZ2 (Z;??)Zf(zi)\/lﬂ—il)
a i=1

where Z; are the Chebyshev zeros.
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Projection Methods

Neoclassical Growth Model

Least Squares

e Then using the Gauss-Chebyshev quadrature formula we obtain:

b n
s = [ ReRPak= TS R 1+ R
“ =1

In order to obtain the least squares projection of C(K), we would
need to minimize S(y) using a minimization routine.
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Projection Methods

Neoclassical Growth Model
Galerkin

e With the Galerkin projection method we use again
Gauss-Chebyshev quadrature.

e With this, we must solve the system of p non-linear equations:

0="C=D 3" Ry, kiR + R
=1
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Projection Methods

Simple RBC
¢ Euler Equation:

uc(cy) = BE[exp(zi41) fr(beg1)ue(ciy1)]
s.t. zi41 = pzt + €41, ~ N(0, 0¢)

e Letting C (v, K) denote the approximate solution, the residual
function can be computed as:

Ue <C’(7,K, z))

Ry, K,z) =E| — -
ue(COn2f(K) + (1= 9K ~ C(3,K.2). )

— ﬁ(exp(z')fk(zf(K) +(1-9)K — C’(’y,K,z)) +1- 5)]
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Projection Methods

How to deal with the expectations operator?

1 E/2

R(v, K, 2) :/: Uex/ﬂexp(— 2052>X
uc(é(v,K, z))
ue(Cn 2 f(K) + (1 - 0)K = C(y,K,2), pz + )

= B(explpz + ) fi (=S (K)

+(1-0K — (v, K, z)) v1- 5)] de
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Projection Methods

How to deal with the expectations operator?

Gauss—Hermite Quadrature

then,

e Apply the following change of variable x =

\fae

dr = de,

1
\/io'e
>~ 1

R(v,K,z) = / —Wexp(—a:Z)x

7 uc(é(v, K, z))
uc<é(fy, 2f(K)+ (1= 8K —C(v, K, 2), pz + \/id@))

— B((0= + Vaor) fi (2 () + (1 = DK — C (7, K, 2)) +1 - 6)]
dx
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Projection Methods

How to deal with the expectations operator?

Gauss-Hermite quadrature

e This integral can be approximated by the Gauss-Hermite
quadrature formula:

1
R(Va sz) = Z —=w

Ue <C’(7,K, z))
ue (O, 21 (K) + (1= 0K = C (1. K. 2), p= + Vaoem)

_ B((ﬂz +V20.1) fi (zf(K) +(1-0)K - C(v, K, z)) +1- 5)]

e For different n’s, the integration nodes z; and weights w; can be
found in books.
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Projection Methods

Simple RBC

Function approximation: Examples

e Monomials:
é(% K,z) =+ mk+ vz + 73!{2 + v4kz + 7522

e Chebyshev:

p1 P2

C’(%K z ZZ%] (2)

i=1 j=1
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Projection Methods

Simple RBC

Collocation

e Given the residual function that we have computed, we could solve
a on linear system for a number of points in the state space (z x k)
equal to the number of parameters that you need to estimate
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Projection Methods

Simple RBC

Least Squares

¢ We need to compute a multidimensional integral:
by bs

:/ R(K, z;v)%dk dz
az

¢ We could again use Gauss-Chebyshev quadrature to approximate
it with:

S(fy)f:7T (bk_ak b ~ @) ZZR%kl,zm 21+ k14 2,

=1 m=1

e With Galerkin projection you will have one equation for each
element of the family of polynomials.
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Accuracy

Accuracy

A perfect solution will make zero the Euler equation in all the
points of the domain.

e This will be typically impossible.

¢ We have considered different definitions for making the residual
small.

e For instance, using state space methods, we chose to make the
residual 0 at a certain points and we have paid no attention to the
rest of the domain.

e So, how far are we from a zero of the equation in all the domain?
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Accuracy

Accuracy

e We could define the residual function as:
N (k,z;~) = abs [C’(k‘, z;y) — u;l (E [,Bz’fk(K’)uc(C’(k’, 2 ’y))] )]

which measure the numerical error in consumption units.

¢ People like to report the relative consumption error or even its log,

N(k, z;7)

Nr(k,z;7) = =
5 = A )

; or Ni(k,z;7) = log(Nr(k, 2;7))
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Accuracy

Accuracy

e Qur accuracy measure is not a real number but a function in
z x k.

e There is a lot of information to convey.
- We can plot the function

- We can compute some summary statistics. A favorite one would be:
log | (k. 257)di
zxk

This measure gives a sense of the average error, where the average
is computed by giving more weight wherever we have more people
and just forgetting about accuracy where there is no action.

- Another typical statistic reported,

maxlog Ng(k, 2;7)
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