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Introduction

Introduction

• In the lecture we are going to give an overview of different
methods for solving recursive problems (not only life cycle).

• In the first part, we are going to cover some tricks to speed up and
increase accuracy of the solution when using state-space methods.

• In the second part, we will see projection methods.
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State-Space Methods

Discrete Approximation
Simple Iterative Procedure

• Take the problem faced by an agent in the life cycle model 2
periods before certain death:

vJ−1(a) =max
c,a′

{u(c) + sjβvJ(a
′)}

s.t. c+ a′ = aR+ b+ T

• The function u(c) is strictly concave and twice continuously
differentiable.

• The way we solved this in first-year macro is by iterating for each
value of ai ∈ {a0, ..., ankk} through all values of a′j ∈ {a0, ..., amax}
where,

amax = aiR+ b+ T
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State-Space Methods

Discrete Approximation
Exploiting Monotonicity

• As you might have guessed, this is a not very smart algorithm.

• We can do much better if we exploit the structure of the problem.

• We can exploit the monotonicity of the policy function i.e

ai > aj ⇒ gaJ−1(ai) > gaJ−1(aj)

Bueren (EUI, 2024) Numerical Methods 4 / 53



State-Space Methods

Discrete Approximation
Exploiting Concavity

• Second, we can shorten the number of computations in the
maximization since the function

f(a′) = u(aR+ b+ T − a′) + sjβvJ(a
′)

is strictly concave.

• A strictly concave function defined over a grid of nkk points either
takes its maximum at one of the boundary points or in the interior
of the grid.

▶ In the first case the function is decreasing (increasing) over the
whole grid, if the maximum is the first (last) point of the grid.

▶ In the second case the function is first increasing and then
decreasing.

• As a consequence we can take the mid-point of the grid ai and the
grid point next to it ai+1 and determine whether the maximum is
to the right of ai.
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State-Space Methods

Discrete Approximation
Binary Search Algorithm

• Find the maximum of a strictly concave function f(x) defined over
a grid {x1, ..., xn}

1. Select two points: il = floor
( imin + imax

2

)
and iu = il + 1

2. If f(xiu) > f(xil) set imin = il otherwise set imin = iu

3. If imax − imin = 2, stop and choose the largest element among
f(ximin), f(ximin+1), and f(ximax). Otherwise return to Step 2.
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State-Space Methods Policy Function Iteration

Policy Function Iteration

• In infinite horizon models, we use value function iteration to find
the fixed point of the operator.

• Value function iteration is nevertheless a slow procedure since it
converges linearly at the rate β:

||vs+1 − v∗|| ≤ β||vs − v∗||

• Howard’s improvement algorithm or policy function iteration is a
method to enhance convergence.

• Each time a policy function is computed, we solve for the value
function that would occur, if the policy were followed forever.

• This value function is then used in the next step to obtain a new
policy function.
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State-Space Methods Policy Function Iteration

Policy Function Iteration

• What is the value function associated with a given gk(k, z)?

v(ki, zm) = u(zmf(ki)− kj) + β
∑
zl

Π(zl|zm)v(kj , zl),

where kj = gk(ki, zm).

• In matrix notation:

vecv = vecu+ βQ vecv

with solution:

vecv = [I − βQ]−1u

• If the state is space is large, computing the inverse of [I − βQ]−1

can be very expensive.
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State-Space Methods Policy Function Iteration

Modified Policy Function Iteration

• Instead of computing the inverse, use a value function which is
close but not exactly the one associated with the proposed policy
function.

• Run a k number of times the following code:

w1 = v0

vecwl+1 = vecu+ βQ vecwl

v1 = wk+1
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State-Space Methods Interpolation Between Grid Points

Interpolation Between Grid Points

• In case the relevant state space is large, the computation time on a
grid with many points may become a binding constraint.

• We, thus, look for methods that increase precision for a given
number of grid-points without a compensating rise in computation
time.

• How do we accomplish this?
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State-Space Methods Interpolation Between Grid Points

Interpolation Between Grid Points

• Imagine that using the first year macro code, we found that
a′ = aj is optimal for the set of points in the grid.

• Since the value function is increasing and concave, the true
maximizer must lie in the interval [aj−1, aj+1].

• If we were able to evaluate the rhs of the Bellman equation at all
a′ ∈ [aj−1, aj+1], we could pick the maximizer of the function in
this interval.

• Two things are necessary to achieve this goal:

1. an approximation of the value function over the interval [aj−1, aj+1]

2. a method to locate the maximum of a continuous function.
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State-Space Methods Interpolation Between Grid Points

Interpolation Between Grid Points
Linear Interpolation

• Linear interpolation is simple and shape preserving.

• This property is important, if we use interpolation to approximate
the value function, which is known to be concave and increasing.

• Linear interpolation uses the point:

f̂(x) := f(x1) +
f(x2) + f(x1)

x2 − x1
(x− x1)

• Thus, f is approximated by the line through (x1, f(x1)) and
(x2, f(x2)).
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State-Space Methods Interpolation Between Grid Points

Interpolation Between Grid Points
Cubic Splines

• Sometimes we are interested in preserving the smoothness of a
function.

• Assume that we approximate the function f(x) by a function s(x)
over the grid x = [x0, x1, . . . , xn] with corresponding function
values y = [y0, y1, . . . , yn] with yi = f(xi).

• On each subinterval [xi−1, xi], we will approximate f(x) with a
cubic function s(x) = ai + bix+ cix

2 + dix
3
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State-Space Methods Interpolation Between Grid Points

Interpolation Between Grid Points
Cubic Splines

• We impose that:

1. The approximation is exact at the grid-points, yi = s(xi):

yi = ai + bixi + cix
2
i + dix

3
i , i = 1, . . . , n

yi = ai+1 + bi+1xi + ci+1x
2
i+1 + di+1x

3
i , i = 0, . . . , n− 1

2. The first and the second derivatives agree on the nodes:

bi + 2cixi + 3dix
2
i = bi+1 + 2ci+1xi + 3di+1x

2
i , i = 1, . . . , n− 1

2ci + 6dixi = 2ci+1 + 6di+1xi, i = 1, . . . , n− 1

These conditions amount to 4n− 2 linear equations in the 4n
unknowns ai, bi, ci, di leaving us two conditions short of fixing the
coefficients.
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State-Space Methods Interpolation Between Grid Points

Interpolation Between Grid Points
Cubic Splines

• Two possible solutions:

1. Natural spline:

s′′(x0) = s′′(xn) = 0

2. Secant Hermite spline: use the slope of the secant lines over [x0, x1]
and [xn−1, xn] respectively:

s′(x0) =
y1 − y0
x1 − x0

= b1 + 2c1x0 + 3d1x
2
0

s′(xn) =
yn − yn−1

xn − xn−1
= bn + 2cnxn + 3dnx

2
n
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State-Space Methods Locating the Maximum

Locating the Maximum

• Using these interpolation methods allows us to approximate the
rhs of the Bellman equation by a continuous function:

ϕ̂(K) = u(f(Ki)−K) + βv̂(K)

• In the interval [Kj−1,Kj+1] the maximum of ϕ̂(K) is located
either at the end-points or in the interior.
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State-Space Methods Locating the Maximum

Locating the Maximum
Golden Section Search

• This method locates the maximum of a single peaked function
f(x) in the interval I = [A,D].

• The idea is to shrink the interval around the true maximizer x∗ in
successive steps until the midpoint of the remaining interval is a
good approximation to x∗.

• Imagine we have two other function evaluations at points B and C

- If f(B) > f(C) ⇒ look in [A,C]
- If f(B) < f(C) ⇒ look in [B,D]

• How to choose B and C?
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State-Space Methods Locating the Maximum

Locating the Maximum
Golden Section Search

• Choose them such that ĀC = B̄D:

1. ĀD = ĀC + C̄D

2.
ĀC

ĀD
=
C̄D

ĀC

substitute 1 in 2:

ĀC

ĀC + C̄D
=
C̄D

ĀC

define p =
C̄D

ĀC
solve for p:

p = (
√
5− 1)/2
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Projection Methods

Projection Methods

• When solving DP problems, we are trying to solve for a function f
(the value function or policy function) that satisfies a condition
(Bellman equation or euler equation).

• Projection methods provide approximate solutions to functional
equations.

• Different from Rn, however, function spaces have infinite
dimensions.

• Projection methods use a family of polynomials P := {ψi}∞i=0 and
approximate f by a finite sum of members of this family.
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Projection Methods

Motivating Example

• Consider the ordinary differential equation:

f ′(x) + f(x) = 0, f(0) = 1,

the solution is given by: f(x) = e−x.
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Projection Methods

Definitions

• In order to approximate any function we choose:

- A basis Ψ.
- An order of approximation
- An interval over which we approximate the function

• Definition: Basis
A subset Ψ of a vector space V is a basis if all ψ ∈ Ψ are linearly
independent and all v ∈ V can be expressed as a linear
combination of the elements of Ψ.

• The idea is then is to find γ to approximate the funcion f:

f(x) ≃ f̂(x, γ) =

p∑
i=1

γiψi(x)
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Projection Methods

Definitions

• Consider the set of all continuous functions that map the interval
[a, b] to the real line denoted by C[a, b].

• This set is a vector space and monomials build a base Ψm for this
space i.e. every element of the set can be represented by:

f(x) =

∞∑
i=0

γix
i

• For this reason it is common to use a linear combination of the
first p members of this base to approximate a continuous function
f(t) in C[a, b]

f(x) ≃
p∑

i=0

γix
i
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Projection Methods

Back to Example

• Back to our example, let’s approximate f(x) using the basis of
monomials with the first 3 members (p=3).

f̂(x) = γ0 + γ1x+ γ2x
2 (γ0 = 1 since f(0) = 1)

• Using the differential equation, let us define the residual function:

R(γ, t) = γ1 + 2γ2x+ 1 + γ1x+ γ2x
2

• This function describes the error that results if we use our guess of
the solution instead of the true solution in the functional equation.

• We want γ to minimize R(γ, x) for all x ∈ [a, b] given some metric.
This step is known as the projection against a given basis.
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Projection Methods

Projections Direction

• Generally, we can write a projection as a weighting function p(x)
which together with R define an inner product given by:∫

x
p(x)R(γ, x)dx

• We look for a γ such that:∫
x
p(x)R(γ, x)dx ≃ 0

• Depending on the projection that we use we will obtain different
results.
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Projection Methods

Least Squares Projection

• Choose as projection direction the gradient of the loss function:

p(x) =
∂R(γ, x)

∂γ

• The implied problem would be equivalent to solving:

min
γ

∫
x
R(γ, x)2dx

• By FOCs using Leibniz integral rule:∫
x

∂R(γ, x)

∂γ
R(γ, x)dx = 0
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Projection Methods

Least Squares Projection
Example

• In the example, for the interval [0, 2], the least squares projection
is found by solving:

min
γ

∫ 2

0
(1 + γ1(1 + x) + γ2(2x+ x2))2dx

with FOCs:∫ 2

0
(1 + x)(1 + γ1(1 + x) + γ2(2x+ x2))dx = 0∫ 2

0
(2x+ x2)(1 + γ1(1 + x) + γ2(2x+ x2))dx = 0
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Projection Methods

Dirac Delta Projection / Collocation

• Discretize the state space x into a grid of size p
x̃ = {x̃0, x̃1, . . . , x̃p−1}.

• Projection direction are given by the Dirac deltas:

pi(x) =

{
1 if x = x̃i

0 otherwise

• This is a fancy way to describe the following: we want the
Residual function to be satisfied exactly at p chosen points of x.

• We therefore obtain a system of p equations and p unknowns.
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Projection Methods

Dirac Delta Projection / Collocation
Example

• We may want that the residual function is equal to zero at a given
set of points:

• Suppose we choose x1 = 1 and x2 = 2.

• This gives the linear system:

− 1 = 2γ1 + 3γ2

− 1 = 3γ1 + 8γ2
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Projection Methods

Galerkin Projection

• Projection direction is given by:

pi(x) = ψi(x)

• There we solve for: ∫
x
ψi(x)R(γ, x)dx = 0

• Which is also a system of p equations (one for each member of the
basis) and p unkowns.
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Projection Methods

Galerkin Projection
Example

• For our example we would have:∫ 2

0
xR(γ, x)dx = 0∫ 2

0
x2R(γ, x)dx = 0
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Projection Methods

Orthogonal Bases

• This is how the first six elements of the basis of monomials look
like.
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• The elements of this basis share a lot of information. This makes
the numerical solutions suffer in terms of precision.
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Projection Methods

Orthogonal Bases
Definition

• Definition: Orthogonality
A family of elements Ψ = {ψ} ⊂ V is orthogonal with respect to
the inner product < ·, · > if ∀i ̸= j,< ψi, ψj >= 0

• Definition: Orthogonal basis
A subset Ψ of an inner product vector space V is an orthogonal
basis of V if it is a basis and all its elements are orthogonal.

• The general idea is that elements of these bases share much less
information making the numerical solutions much more precises.
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Projection Methods

Orthogonal Bases
Chebyshev polynomials

• Define the element i as,

ψi(x) = cos(i arccos(x))

• They share much less information than the monomials.

• They can also be generated recursively,

i = 0, ψi(x) = 1

i = 1, ψi(x) = x

i ≥ 2, ψi(x) = 2xψi−1(x)− ψi−2(x)

• Chebyshev polynomials are defined in the interval [−1; 1], but this
is not a limitation as long as the domain of f(x) is bounded.
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Projection Methods

Orthogonal Bases
Chebyshev polynomials

• This is how the first six elements of the basis of the Chebyshev
polynomials look like.
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Projection Methods

Neoclassical Growth Model

• Let’s return to our economic model of reference: the Neoclassical
Growth Model.

• And let’s go to our preferred equation: the Euler Equation.

uc(c) = βf ′(f(K)− c)uc(c
′)

• Assume we want to solve this model in terms of the policy
function C(K).
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Projection Methods

Neoclassical Growth Model

• Letting Ĉ(γ,K) denote the approximate solution, the residual
function may be computed from:

R(γ,K) =
u′(Ĉ(γ,K))

u′(Ĉ(γ, f(K)− Ĉ(γ,K)))
− βf ′(f(K)− Ĉ(γ,K))
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Projection Methods

Neoclassical Growth Model
Collocation

• Computing the solution using collocation is relatively straight
forward.

• You need to choose p number of points for which to solve the
Euler equation.

▶ The Chebyshev interpolation theorem shows that Chebyshev zeros
minimize the maximal interpolation error (Chebyshev collocation).

• Chebyshev zeros:

k̃i = cos
(2i− 1

2p
π
)
, i = 1, . . . , p

with, k̃i =
2k

b− a
− a+ b

b− a
, k̃i ∈ [0, 1], ki ∈ [a, b]
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Projection Methods

Neoclassical Growth Model
Least Squares

• In case we choose the least squares projection, we need to compute
the following integral:

min
γ

∫ b

a
R(γ, k)2dk

• How to compute this integral?
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Projection Methods

Numerical Integration

• There are two ways of computing an integral
∫ b
a f(x)dx

numerically:

1. Newton-Cotes Formulas

2. Gaussian Formulas
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Projection Methods

Numerical Integration
Newton-Cotes Formulas

• The first idea is to approximate the function f(x) by piecewise
polynomials and integrate the polynomials over subdomains of
[a, b]. ∫ b

a
f(x)dx ≃ b− a

2
[f(a) + f(b)]

• If we use higher-order polynomials or a higher number of
subdomains, more generally, we derive a Newton-Cotes formula for
the approximation of the integral which evaluates the integral at a
number of points: ∫ b

a
f(x)dx ≃

n∑
i=1

aif(xi)
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Projection Methods

Numerical Integration
Gaussian Formulas

• In Gaussian formulas, we choose weights and nodes optimally in
order to provide a good approximation of

∫ b
a f(x)dx.

• Choosing an orthogonal basis for approximating f(x) is important
since it can be shown that we can compute the integral of a
polynomial of degree 2n− 1 exactly.

• Gauss-Chebyshev quadrature formula:∫ b

a
f(z)dz ≃ π(b− a)

2n

n∑
i=1

f(zi)
√

1 + z̃i

)

where z̃i are the Chebyshev zeros.
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Projection Methods

Neoclassical Growth Model
Least Squares

• Then using the Gauss-Chebyshev quadrature formula we obtain:

S(γ) =

∫ b

a
R(γ,K)2dk ≃ π(b− a)

2n

n∑
l=1

R(γ, kl)
2

√
1 + k̃l

In order to obtain the least squares projection of C(K), we would
need to minimize S(γ) using a minimization routine.
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Projection Methods

Neoclassical Growth Model
Galerkin

• With the Galerkin projection method we use again
Gauss-Chebyshev quadrature.

• With this, we must solve the system of p non-linear equations:

0 =
π(b− a)

2n

n∑
l=1

R(γ, kl)Ti(k̃l)

√
1 + k̃l
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Projection Methods

Simple RBC

• Euler Equation:

uc(ct) = βE[exp(zt+1)fk(kt+1)uc(ct+1)]

s.t. zt+1 = ρzt + ϵt+1, ϵ ∼ N(0, σϵ)

• Letting Ĉ(γ,K) denote the approximate solution, the residual
function can be computed as:

R(γ,K, z) =E

[
uc

(
Ĉ(γ,K, z)

)
uc

(
Ĉ(γ, zf(K) + (1− δ)K − Ĉ(γ,K, z), z′)

)
− β

(
exp(z′)fk

(
zf(K) + (1− δ)K − Ĉ(γ,K, z)

)
+ 1− δ

)]
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Projection Methods

How to deal with the expectations operator?

R(γ,K, z) =

∫ ∞

−∞

1

σϵ
√
2π

exp
(
− ϵ′2

2σ2ϵ

)
×[

uc

(
Ĉ(γ,K, z)

)
uc

(
Ĉ(γ, zf(K) + (1− δ)K − Ĉ(γ,K, z), ρz + ϵ′)

)
− β

(
exp(ρz + ϵ′)fk

(
zf(K)

+ (1− δ)K − Ĉ(γ,K, z)
)
+ 1− δ

)]
dϵ′
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Projection Methods

How to deal with the expectations operator?
Gauss–Hermite Quadrature

• Apply the following change of variable x =
ϵ′√
2σϵ

then,

dx =
1√
2σϵ

dϵ′,

R(γ,K,z) =

∫ ∞

−∞

1√
π
exp(−x2)×[

uc

(
Ĉ(γ,K, z)

)
uc

(
Ĉ(γ, zf(K) + (1− δ)K − Ĉ(γ,K, z), ρz +

√
2σϵx)

)
− β

(
(ρz +

√
2σϵx)fk

(
zf(K) + (1− δ)K − Ĉ(γ,K, z)

)
+ 1− δ

)]
dx
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Projection Methods

How to deal with the expectations operator?
Gauss-Hermite quadrature

• This integral can be approximated by the Gauss-Hermite
quadrature formula:

R(γ,K,z) ≃
n∑

l=1

1√
π
wl

[
uc

(
Ĉ(γ,K, z)

)
uc

(
Ĉ(γ, zf(K) + (1− δ)K − Ĉ(γ,K, z), ρz +

√
2σϵxl)

)
− β

(
(ρz +

√
2σϵxl)fk

(
zf(K) + (1− δ)K − Ĉ(γ,K, z)

)
+ 1− δ

)]

• For different n’s, the integration nodes xl and weights wl can be
found in books.
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Projection Methods

Simple RBC
Function approximation: Examples

• Monomials:

Ĉ(γ,K, z) = γ0 + γ1k + γ2z + γ3k
2 + γ4kz + γ5z

2

• Chebyshev:

Ĉ(γ,K, z) =

p1∑
i=1

p2∑
j=1

γijTi(K̃)Tj(z̃)
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Projection Methods

Simple RBC
Collocation

• Given the residual function that we have computed, we could solve
a on linear system for a number of points in the state space (z× k)
equal to the number of parameters that you need to estimate
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Projection Methods

Simple RBC
Least Squares

• We need to compute a multidimensional integral:

S(γ) =

∫ bk

ak

∫ bz

az

R(K, z; γ)2dk dz

• We could again use Gauss-Chebyshev quadrature to approximate
it with:

S(γ) ≃ π2(bk − ak)(bz − az)

(2n)2

n∑
l=1

n∑
m=1

R(γ, kl, zm)2
√
1 + k̃l

√
1 + z̃m

• With Galerkin projection you will have one equation for each
element of the family of polynomials.
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Accuracy

Accuracy

• A perfect solution will make zero the Euler equation in all the
points of the domain.

• This will be typically impossible.

• We have considered different definitions for making the residual
small.

• For instance, using state space methods, we chose to make the
residual 0 at a certain points and we have paid no attention to the
rest of the domain.

• So, how far are we from a zero of the equation in all the domain?
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Accuracy

Accuracy

• We could define the residual function as:

N (k, z; γ) = abs

[
Ĉ(k, z; γ)− u−1

c

(
E
[
βz′fk(K

′)uc(Ĉ(k
′, z′; γ))

])]

which measure the numerical error in consumption units.

• People like to report the relative consumption error or even its log,

NR(k, z; γ) =
N (k, z; γ)

Ĉ(k, z; γ)
; or NL(k, z; γ) = log(NR(k, z; γ))
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Accuracy

Accuracy

• Our accuracy measure is not a real number but a function in
z × k.

• There is a lot of information to convey.

- We can plot the function

- We can compute some summary statistics. A favorite one would be:

log

∫
z×k

NR(k, z; γ)dµ̂

This measure gives a sense of the average error, where the average
is computed by giving more weight wherever we have more people
and just forgetting about accuracy where there is no action.

- Another typical statistic reported,

max
z,k

logNR(k, z; γ)
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