Numerical Methods

Jesús Bueren

EUI, 2024

Bueren (EUI, 2024) [Numerical Methods](#page-52-0) 1 / 53

[Introduction](#page-1-0)

Introduction

- In the lecture we are going to give an overview of different methods for solving recursive problems (not only life cycle).
- In the first part, we are going to cover some tricks to speed up and increase accuracy of the solution when using state-space methods.
- In the second part, we will see projection methods.

[State-Space Methods](#page-2-0)

Discrete Approximation

Simple Iterative Procedure

• Take the problem faced by an agent in the life cycle model 2 periods before certain death:

$$
v_{J-1}(a) = \max_{c,a'} \{u(c) + s_j \beta v_J(a')\}
$$

s.t. $c + a' = aR + b + T$

- The function $u(c)$ is strictly concave and twice continuously differentiable.
- The way we solved this in first-year macro is by iterating for each value of $a_i \in \{a_0, ..., a_{nk}\}\$ through all values of $a'_j \in \{a_0, ..., a_{max}\}\$ where,

$$
a_{max} = a_i R + b + T
$$

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 3/53

[State-Space Methods](#page-2-0)

Discrete Approximation Exploiting Monotonicity

- As you might have guessed, this is a not very smart algorithm.
- We can do much better if we exploit the structure of the problem.
- We can exploit the monotonicity of the policy function i.e

$$
a_i > a_j \Rightarrow g_{J-1}^a(a_i) > g_{J-1}^a(a_j)
$$

Discrete Approximation

Exploiting Concavity

• Second, we can shorten the number of computations in the maximization since the function

$$
f(a') = u(aR + b + T - a') + s_j \beta v_J(a')
$$

is strictly concave.

- A strictly concave function defined over a grid of nkk points either takes its maximum at one of the boundary points or in the interior of the grid.
	- ▶ In the first case the function is decreasing (increasing) over the whole grid, if the maximum is the first (last) point of the grid.
	- ▶ In the second case the function is first increasing and then decreasing.
- As a consequence we can take the mid-point of the grid a_i and the grid point next to it a_{i+1} and determine whether the maximum is to the right of a_i .

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 5/53

Discrete Approximation Binary Search Algorithm

• Find the maximum of a strictly concave function $f(x)$ defined over a grid $\{x_1, ..., x_n\}$

1. Select two points:
$$
i_l = \text{floor}\left(\frac{i_{min} + i_{max}}{2}\right)
$$
 and $i_u = i_l + 1$

2. If $f(x_{i_u}) > f(x_{i_l})$ set $i_{min} = i_l$ otherwise set $i_{min} = i_u$

3. If $i_{max} - i_{min} = 2$, stop and choose the largest element among $f(x_{i_{min}}), f(x_{i_{min}+1}),$ and $f(x_{i_{max}})$. Otherwise return to Step 2.

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 6 / 53

Policy Function Iteration

- In infinite horizon models, we use value function iteration to find the fixed point of the operator.
- Value function iteration is nevertheless a slow procedure since it converges linearly at the rate β :

$$
||\boldsymbol{v}^{s+1}-\boldsymbol{v}^*||\leq \beta||\boldsymbol{v}^s-\boldsymbol{v}^*||
$$

- Howard's improvement algorithm or policy function iteration is a method to enhance convergence.
- Each time a policy function is computed, we solve for the value function that would occur, if the policy were followed forever.
- This value function is then used in the next step to obtain a new policy function.

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 7 / 53

Policy Function Iteration

• What is the value function associated with a given $g^k(k, z)$?

$$
v(k_i, z_m) = u(z_m f(k_i) - k_j) + \beta \sum_{z_l} \Pi(z_l | z_m) v(k_j, z_l),
$$

where
$$
k_j = g^k(k_i, z_m)
$$
.

In matrix notation:

vec $v = \text{vec } u + \beta Q$ vec v

with solution:

$$
\mathrm{vec}\,\bm{v}=[I-\beta Q]^{-1}\bm{u}
$$

• If the state is space is large, computing the inverse of $[I - \beta Q]^{-1}$ can be very expensive.

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 8/53

Modified Policy Function Iteration

- Instead of computing the inverse, use a value function which is close but not exactly the one associated with the proposed policy function.
- Run a k number of times the following code:

$$
\begin{aligned} \boldsymbol{w}^1&=\boldsymbol{v}^0\\ \text{vec}\,\boldsymbol{w}^{l+1}&=\text{vec}\,\boldsymbol{u}+\beta Q\,\text{vec}\,\boldsymbol{w}^l\\ \boldsymbol{v}^1&=\boldsymbol{w}^{k+1} \end{aligned}
$$

Interpolation Between Grid Points

- In case the relevant state space is large, the computation time on a grid with many points may become a binding constraint.
- We, thus, look for methods that increase precision for a given number of grid-points without a compensating rise in computation time.
- How do we accomplish this?

Interpolation Between Grid Points

- Imagine that using the first year macro code, we found that $a' = a_j$ is optimal for the set of points in the grid.
- Since the value function is increasing and concave, the true maximizer must lie in the interval $[a_{i-1}, a_{i+1}]$.
- If we were able to evaluate the rhs of the Bellman equation at all $a' \in [a_{j-1}, a_{j+1}]$, we could pick the maximizer of the function in this interval.
- Two things are necessary to achieve this goal:
	- 1. an approximation of the value function over the interval $[a_{j-1}, a_{j+1}]$
	- 2. a method to locate the maximum of a continuous function.

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 11/53

Interpolation Between Grid Points Linear Interpolation

- Linear interpolation is simple and shape preserving.
- This property is important, if we use interpolation to approximate the value function, which is known to be concave and increasing.
- Linear interpolation uses the point:

$$
\hat{f}(x) := f(x_1) + \frac{f(x_2) + f(x_1)}{x_2 - x_1}(x - x_1)
$$

• Thus, f is approximated by the line through $(x1, f(x1))$ and $(x2, f(x2))$.

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 12/53

Interpolation Between Grid Points Cubic Splines

- Sometimes we are interested in preserving the smoothness of a function.
- Assume that we approximate the function $f(x)$ by a function $s(x)$ over the grid $\mathbf{x} = [x_0, x_1, \dots, x_n]$ with corresponding function values $y = [y_0, y_1, \dots, y_n]$ with $y_i = f(x_i)$.
- On each subinterval $[x_{i-1}, x_i]$, we will approximate $f(x)$ with a cubic function $s(x) = a_i + b_i x + c_i x^2 + d_i x^3$

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 13/53

Interpolation Between Grid Points Cubic Splines

- We impose that:
	- 1. The approximation is exact at the grid-points, $y_i = s(x_i)$:

$$
y_i = a_i + b_i x_i + c_i x_i^2 + d_i x_i^3, \quad i = 1, ..., n
$$

$$
y_i = a_{i+1} + b_{i+1} x_i + c_{i+1} x_{i+1}^2 + d_{i+1} x_i^3, \quad i = 0, ..., n-1
$$

2. The first and the second derivatives agree on the nodes:

$$
b_i + 2c_i x_i + 3d_i x_i^2 = b_{i+1} + 2c_{i+1} x_i + 3d_{i+1} x_i^2, \quad i = 1, ..., n-1
$$

$$
2c_i + 6d_i x_i = 2c_{i+1} + 6d_{i+1} x_i, \quad i = 1, ..., n-1
$$

These conditions amount to $4n-2$ linear equations in the $4n$ unknowns a_i, b_i, c_i, d_i leaving us two conditions short of fixing the coefficients.

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 14/53

Interpolation Between Grid Points Cubic Splines

- Two possible solutions:
	- 1. Natural spline:

$$
s''(x_0) = s''(x_n) = 0
$$

2. Secant Hermite spline: use the slope of the secant lines over $[x_0, x_1]$ and $[x_{n-1}, x_n]$ respectively:

$$
s'(x_0) = \frac{y_1 - y_0}{x_1 - x_0} = b_1 + 2c_1x_0 + 3d_1x_0^2
$$

$$
s'(x_n) = \frac{y_n - y_{n-1}}{x_n - x_{n-1}} = b_n + 2c_nx_n + 3d_nx_n^2
$$

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 15/53

Locating the Maximum

• Using these interpolation methods allows us to approximate the rhs of the Bellman equation by a continuous function:

$$
\hat{\phi}(K) = u(f(K_i) - K) + \beta \hat{v}(K)
$$

• In the interval $[K_{j-1}, K_{j+1}]$ the maximum of $\hat{\phi}(K)$ is located either at the end-points or in the interior.

Locating the Maximum

Golden Section Search

- This method locates the maximum of a single peaked function $f(x)$ in the interval $I = [A, D]$.
- The idea is to shrink the interval around the true maximizer x^* in successive steps until the midpoint of the remaining interval is a good approximation to x^* .
- Imagine we have two other function evaluations at points B and C
	- If $f(B) > f(C) \Rightarrow$ look in [A, C]
	- If $f(B) < f(C) \Rightarrow$ look in $[B, D]$
- How to choose B and C?

Locating the Maximum

Golden Section Search

• Choose them such that $\overline{AC} = \overline{BD}$:

1.
$$
\overline{AD} = \overline{AC} + \overline{CD}
$$

2. $\frac{\overline{AC}}{\overline{AD}} = \frac{\overline{CD}}{\overline{AC}}$

substitute 1 in 2:

$$
\frac{\bar{A C}}{\bar{A C}+\bar{C D}}=\frac{\bar{C D}}{\bar{A C}}
$$

define $p = \frac{\bar{CD}}{\bar{AC}}$ $\frac{\overline{C}}{\overline{AC}}$ solve for *p*:

$$
p = (\sqrt{5} - 1)/2
$$

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 18/53

Projection Methods

- When solving DP problems, we are trying to solve for a function f (the value function or policy function) that satisfies a condition (Bellman equation or euler equation).
- Projection methods provide approximate solutions to functional equations.
- Different from \mathbb{R}^n , however, function spaces have infinite dimensions.
- Projection methods use a family of polynomials $P := {\psi_i}_{i=0}^{\infty}$ and approximate f by a finite sum of members of this family.

Motivating Example

• Consider the ordinary differential equation:

$$
f'(x) + f(x) = 0, \ f(0) = 1,
$$

the solution is given by: $f(x) = e^{-x}$.

Definitions

- In order to approximate any function we choose:
	- $-$ A basis Ψ .
	- An order of approximation
	- An interval over which we approximate the function

• Definition: Basis

A subset Ψ of a vector space V is a basis if all $\psi \in \Psi$ are linearly independent and all $v \in V$ can be expressed as a linear combination of the elements of Ψ.

• The idea is then is to find γ to approximate the funcion f:

$$
f(x) \simeq \hat{f}(x,\gamma) = \sum_{i=1}^{p} \gamma_i \psi_i(x)
$$

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 21 / 53

Definitions

- Consider the set of all continuous functions that map the interval $[a, b]$ to the real line denoted by $C[a, b]$.
- This set is a vector space and monomials build a base Ψ_m for this space i.e. every element of the set can be represented by:

$$
f(x) = \sum_{i=0}^{\infty} \gamma_i x^i
$$

• For this reason it is common to use a linear combination of the first p members of this base to approximate a continuous function $f(t)$ in $C[a, b]$

$$
f(x) \simeq \sum_{i=0}^{p} \gamma_i x^i
$$

Back to Example

• Back to our example, let's approximate $f(x)$ using the basis of monomials with the first 3 members $(p=3)$.

$$
\hat{f}(x) = \gamma_0 + \gamma_1 x + \gamma_2 x^2 \ (\gamma_0 = 1 \text{ since } f(0) = 1)
$$

• Using the differential equation, let us define the residual function:

$$
R(\gamma, t) = \gamma_1 + 2\gamma_2 x + 1 + \gamma_1 x + \gamma_2 x^2
$$

- This function describes the error that results if we use our guess of the solution instead of the true solution in the functional equation.
- We want γ to minimize $R(\gamma, x)$ for all $x \in [a, b]$ given some metric. This step is known as the projection against a given basis.

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 23/53

 \cdot

Projections Direction

• Generally, we can write a projection as a weighting function $p(x)$ which together with R define an inner product given by:

$$
\int_x p(x)R(\gamma,x)dx
$$

• We look for a γ such that:

$$
\int_{x} p(x)R(\gamma, x)dx \simeq 0
$$

• Depending on the projection that we use we will obtain different results.

Least Squares Projection

• Choose as projection direction the gradient of the loss function:

$$
p(x) = \frac{\partial R(\gamma, x)}{\partial \gamma}
$$

• The implied problem would be equivalent to solving:

$$
\min_{\gamma} \int_{x} R(\gamma, x)^2 dx
$$

• By FOCs using Leibniz integral rule:

$$
\int_{x} \frac{\partial R(\gamma, x)}{\partial \gamma} R(\gamma, x) dx = 0
$$

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 25 / 53

Least Squares Projection Example

• In the example, for the interval $[0, 2]$, the least squares projection is found by solving:

$$
\min_{\gamma} \int_0^2 (1 + \gamma_1 (1 + x) + \gamma_2 (2x + x^2))^2 dx
$$

with FOCs:

$$
\int_0^2 (1+x)(1+\gamma_1(1+x)+\gamma_2(2x+x^2))dx = 0
$$

$$
\int_0^2 (2x+x^2)(1+\gamma_1(1+x)+\gamma_2(2x+x^2))dx = 0
$$

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 26 / 53

Dirac Delta Projection / Collocation

- Discretize the state space x into a grid of size p $\tilde{x} = {\tilde{x}_0, \tilde{x}_1, \ldots, \tilde{x}_{n-1}}.$
- Projection direction are given by the Dirac deltas:

$$
p_i(x) = \begin{cases} 1 \text{ if } x = \tilde{x}_i \\ 0 \text{ otherwise} \end{cases}
$$

- This is a fancy way to describe the following: we want the Residual function to be satisfied exactly at p chosen points of x.
- We therefore obtain a system of p equations and p unknowns.

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 27/53

Dirac Delta Projection / Collocation Example

- We may want that the residual function is equal to zero at a given set of points:
- Suppose we choose $x_1 = 1$ and $x_2 = 2$.
- This gives the linear system:

$$
-1 = 2\gamma_1 + 3\gamma_2
$$

$$
-1 = 3\gamma_1 + 8\gamma_2
$$

Galerkin Projection

• Projection direction is given by:

$$
p_i(x) = \psi_i(x)
$$

• There we solve for:

$$
\int_x \psi_i(x) R(\gamma, x) dx = 0
$$

• Which is also a system of p equations (one for each member of the basis) and p unkowns.

Galerkin Projection Example

• For our example we would have:

$$
\int_0^2 xR(\gamma, x)dx = 0
$$

$$
\int_0^2 x^2 R(\gamma, x)dx = 0
$$

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 30 / 53

Orthogonal Bases

• This is how the first six elements of the basis of monomials look like.

• The elements of this basis share a lot of information. This makes the numerical solutions suffer in terms of precision.

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 31 / 53

Orthogonal Bases Definition

• Definition: Orthogonality

A family of elements $\Psi = {\psi} \subset V$ is orthogonal with respect to the inner product $\langle \cdot, \cdot \rangle$ if $\forall i \neq j, \langle \psi_i, \psi_j \rangle = 0$

• **Definition:** Orthogonal basis

A subset Ψ of an inner product vector space V is an orthogonal basis of V if it is a basis and all its elements are orthogonal.

• The general idea is that elements of these bases share much less information making the numerical solutions much more precises.

Orthogonal Bases

Chebyshev polynomials

• Define the element i as,

$$
\psi_i(x) = \cos(i \arccos(x))
$$

- They share much less information than the monomials.
- They can also be generated recursively,

$$
\begin{aligned}\ni &= 0, & \psi_i(x) &= 1 \\
i &= 1, & \psi_i(x) &= x \\
i &\ge 2, & \psi_i(x) &= 2x\psi_{i-1}(x) - \psi_{i-2}(x)\n\end{aligned}
$$

• Chebyshev polynomials are defined in the interval [−1; 1], but this is not a limitation as long as the domain of $f(x)$ is bounded.

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 33/53

Orthogonal Bases

Chebyshev polynomials

• This is how the first six elements of the basis of the Chebyshev polynomials look like.

Neoclassical Growth Model

- Let's return to our economic model of reference: the Neoclassical Growth Model.
- And let's go to our preferred equation: the Euler Equation.

$$
u_c(c) = \beta f'(f(K) - c)u_c(c')
$$

• Assume we want to solve this model in terms of the policy function $C(K)$.

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 35 / 53

Neoclassical Growth Model

• Letting $\hat{C}(\gamma, K)$ denote the approximate solution, the residual function may be computed from:

$$
R(\gamma, K) = \frac{u'(\hat{C}(\gamma, K))}{u'(\hat{C}(\gamma, f(K) - \hat{C}(\gamma, K)))} - \beta f'(f(K) - \hat{C}(\gamma, K))
$$

Neoclassical Growth Model

Collocation

- Computing the solution using collocation is relatively straight forward.
- You need to choose p number of points for which to solve the Euler equation.
	- ▶ The Chebyshev interpolation theorem shows that Chebyshev zeros minimize the maximal interpolation error (Chebyshev collocation).
- Chebyshev zeros:

$$
\tilde{k}_i = \cos\left(\frac{2i-1}{2p}\pi\right), \ i = 1, \dots, p
$$

with,
$$
\tilde{k}_i = \frac{2k}{b-a} - \frac{a+b}{b-a}
$$
, $\tilde{k}_i \in [0,1], k_i \in [a, b]$

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 37 / 53

Neoclassical Growth Model Least Squares

• In case we choose the least squares projection, we need to compute the following integral:

$$
\min_{\gamma} \int_{a}^{b} R(\gamma, k)^2 dk
$$

• How to compute this integral?

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 38 / 53

Numerical Integration

- There are two ways of computing an integral $\int_a^b f(x)dx$ numerically:
	- 1. Newton-Cotes Formulas
	- 2. Gaussian Formulas

Numerical Integration

Newton-Cotes Formulas

• The first idea is to approximate the function $f(x)$ by piecewise polynomials and integrate the polynomials over subdomains of $[a, b]$.

$$
\int_{a}^{b} f(x)dx \simeq \frac{b-a}{2}[f(a) + f(b)]
$$

• If we use higher-order polynomials or a higher number of subdomains, more generally, we derive a Newton-Cotes formula for the approximation of the integral which evaluates the integral at a number of points:

$$
\int_a^b f(x)dx \simeq \sum_{i=1}^n a_i f(x_i)
$$

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 40 / 53

Numerical Integration

Gaussian Formulas

- In Gaussian formulas, we choose weights and nodes optimally in order to provide a good approximation of $\int_a^b f(x)dx$.
- Choosing an orthogonal basis for approximating $f(x)$ is important since it can be shown that we can compute the integral of a polynomial of degree $2n - 1$ exactly.
- Gauss-Chebyshev quadrature formula:

$$
\int_{a}^{b} f(z)dz \simeq \frac{\pi(b-a)}{2n} \sum_{i=1}^{n} f(z_i) \sqrt{1 + \tilde{z}_i}
$$

where \tilde{z}_i are the Chebyshev zeros.

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 41/53

Neoclassical Growth Model Least Squares

• Then using the Gauss-Chebyshev quadrature formula we obtain:

$$
S(\gamma) = \int_a^b R(\gamma, K)^2 dk \simeq \frac{\pi(b-a)}{2n} \sum_{l=1}^n R(\gamma, k_l)^2 \sqrt{1 + \tilde{k}_l}
$$

In order to obtain the least squares projection of $C(K)$, we would need to minimize $S(\gamma)$ using a minimization routine.

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 42/53

Neoclassical Growth Model Galerkin

- With the Galerkin projection method we use again Gauss-Chebyshev quadrature.
- With this, we must solve the system of p non-linear equations:

$$
0 = \frac{\pi(b-a)}{2n} \sum_{l=1}^{n} R(\gamma, k_l) T_i(\tilde{k}_l) \sqrt{1 + \tilde{k}_l}
$$

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 43/53

Simple RBC

• Euler Equation:

$$
u_c(c_t) = \beta E[\exp(z_{t+1}) f_k(k_{t+1}) u_c(c_{t+1})]
$$

s.t. $z_{t+1} = \rho z_t + \epsilon_{t+1}, \epsilon \sim N(0, \sigma_{\epsilon})$

• Letting $\hat{C}(\gamma, K)$ denote the approximate solution, the residual function can be computed as:

$$
R(\gamma, K, z) = E\left[\frac{u_c(\hat{C}(\gamma, K, z))}{u_c(\hat{C}(\gamma, z f(K) + (1 - \delta)K - \hat{C}(\gamma, K, z), z'))} - \beta\left(\exp(z')f_k\left(z f(K) + (1 - \delta)K - \hat{C}(\gamma, K, z)\right) + 1 - \delta\right)\right]
$$

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 44 / 53

How to deal with the expectations operator?

$$
R(\gamma, K, z) = \int_{-\infty}^{\infty} \frac{1}{\sigma_{\epsilon}\sqrt{2\pi}} \exp\left(-\frac{\epsilon'^2}{2\sigma_{\epsilon}^2}\right) \times
$$

$$
\left[\frac{u_c(\hat{C}(\gamma, K, z))}{u_c(\hat{C}(\gamma, zf(K) + (1 - \delta)K - \hat{C}(\gamma, K, z), \rho z + \epsilon')}\right) - \beta \left(\exp(\rho z + \epsilon') f_k\left(zf(K)\right) + (1 - \delta)K - \hat{C}(\gamma, K, z)\right) + 1 - \delta\right)\right] d\epsilon'
$$

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 45 / 53

How to deal with the expectations operator? Gauss–Hermite Quadrature

• Apply the following change of variable $x = \frac{\epsilon'}{6}$ √ $2\sigma_{\epsilon}$ then,

$$
dx = \frac{1}{\sqrt{2}\sigma_{\epsilon}}d\epsilon',
$$

$$
R(\gamma, K, z) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{\pi}} \exp(-x^2) \times
$$

$$
\left[\frac{u_c(\hat{C}(\gamma, K, z))}{u_c(\hat{C}(\gamma, zf(K) + (1 - \delta)K - \hat{C}(\gamma, K, z), \rho z + \sqrt{2}\sigma_{\epsilon}x))} - \beta((\rho z + \sqrt{2}\sigma_{\epsilon}x)f_k(zf(K) + (1 - \delta)K - \hat{C}(\gamma, K, z)) + 1 - \delta) \right]
$$

 dx

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 46/53

How to deal with the expectations operator? Gauss-Hermite quadrature

• This integral can be approximated by the Gauss-Hermite quadrature formula:

$$
R(\gamma, K, z) \simeq \sum_{l=1}^{n} \frac{1}{\sqrt{\pi}} w_l
$$

$$
\left[\frac{u_c(\hat{C}(\gamma, K, z))}{u_c(\hat{C}(\gamma, zf(K) + (1 - \delta)K - \hat{C}(\gamma, K, z), \rho z + \sqrt{2}\sigma_{\epsilon}x_l))} - \beta((\rho z + \sqrt{2}\sigma_{\epsilon}x_l)f_k(zf(K) + (1 - \delta)K - \hat{C}(\gamma, K, z)) + 1 - \delta) \right]
$$

• For different n's, the integration nodes x_l and weights w_l can be found in books.

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 47/53

Simple RBC Function approximation: Examples

• Monomials:

$$
\hat{C}(\gamma, K, z) = \gamma_0 + \gamma_1 k + \gamma_2 z + \gamma_3 k^2 + \gamma_4 k z + \gamma_5 z^2
$$

• Chebyshev:

$$
\hat{C}(\gamma, K, z) = \sum_{i=1}^{p_1} \sum_{j=1}^{p_2} \gamma_{ij} T_i(\tilde{K}) T_j(\tilde{z})
$$

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 48 / 53

Simple RBC Collocation

> • Given the residual function that we have computed, we could solve a on linear system for a number of points in the state space $(z \times k)$ equal to the number of parameters that you need to estimate

Simple RBC

- Least Squares
	- We need to compute a multidimensional integral:

$$
S(\gamma) = \int_{a_k}^{b_k} \int_{a_z}^{b_z} R(K, z; \gamma)^2 dk dz
$$

• We could again use Gauss-Chebyshev quadrature to approximate it with:

$$
S(\gamma) \simeq \frac{\pi^2 (b_k - a_k)(b_z - a_z)}{(2n)^2} \sum_{l=1}^n \sum_{m=1}^n R(\gamma, k_l, z_m)^2 \sqrt{1 + \tilde{k}_l} \sqrt{1 + \tilde{z}_m}
$$

• With Galerkin projection you will have one equation for each element of the family of polynomials.

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 50 / 53

[Accuracy](#page-50-0)

Accuracy

- A perfect solution will make zero the Euler equation in all the points of the domain.
- This will be typically impossible.
- We have considered different definitions for making the residual small.
- For instance, using state space methods, we chose to make the residual 0 at a certain points and we have paid no attention to the rest of the domain.
- So, how far are we from a zero of the equation in all the domain?

[Accuracy](#page-50-0)

Accuracy

• We could define the residual function as:

$$
\mathcal{N}(k, z; \gamma) = \text{abs}\Bigg[\hat{C}(k, z; \gamma) - u_c^{-1} \Big(E\Big[\beta z' f_k(K') u_c(\hat{C}(k', z'; \gamma)) \Big] \Big) \Bigg]
$$

which measure the numerical error in consumption units.

• People like to report the relative consumption error or even its log.

$$
\mathcal{N}_R(k, z; \gamma) = \frac{\mathcal{N}(k, z; \gamma)}{\hat{C}(k, z; \gamma)}; \text{ or } \mathcal{N}_L(k, z; \gamma) = \log(\mathcal{N}_R(k, z; \gamma))
$$

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 52 / 53

[Accuracy](#page-50-0)

Accuracy

- Our accuracy measure is not a real number but a function in $z \times k$.
- There is a lot of information to convey.
	- We can plot the function
	- We can compute some summary statistics. A favorite one would be:

$$
\log \int_{\bm{z} \times \bm{k}} \mathcal{N}_{R}(k,z;\gamma) d\hat{\mu}
$$

This measure gives a sense of the average error, where the average is computed by giving more weight wherever we have more people and just forgetting about accuracy where there is no action.

- Another typical statistic reported,

$$
\max_{z,k}\log\mathcal{N}_{R}(k,z;\gamma)
$$

Bueren (EUI, 2024) [Numerical Methods](#page-0-0) 53 / 53